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Abstract

WiFi-based position reconstruction is becoming an increasingly important field of study,
with applications in both ubiquitous computing and crowd analysis. Many approaches to
this problem provide high accuracy at the cost of low ease of use, by often requiring either
specialised hardware of costly offline phases. We compare and analyze the use of several
filtering methods in order to increase the accuracy of a low-cost and out-of-the-box trilat-
eration approach to WiFi-based position reconstruction, by applying the filtering methods
to positions reconstructed from walks through the largest stadium in the Netherlands. The
compared filtering methods consist of exponential filtering, Gaussian filters, Savitzky-Golay
filters, median filters and Kalman filters, along with several variations. In addition to the
performance comparison, we apply sensitivity analysis to the parameters of the methods,
determining which are of most importance to resulting accuracy. We find that the median
filter and some of its variations perform the best, improving upon the baseline accuracy by
seven metres. Other high performers include the Gaussian and Savitzky-Golay filters, which
like the median filter, are simple in their procedures and require few parameters.
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CHAPTER 1

Introduction

Position reconstruction has become an increasingly important field of study for the purposes
of both ubiquitous computing and crowd analysis. For the former, it can aid context-aware
computing by making applications provide services based on the location of the user, contributing
to an improved user experience. The latter requires reliable real world data of movements within
crowds in order to build and validate models, contributing to security and efficiency.

Such position reconstruction is currently often performed using the Global Positioning System
(GPS), being available on virtually all modern mobile devices. As its functionality relies on
satellites, it has pervasive coverage and a high accuracy of up to 5 − 10 meters in outdoor
environments [1]. Nonetheless, GPS comes with significant drawbacks. It carries a relatively
high energy cost, requiring mobile devices to either increase in size, or risk early draining of the
battery [2]. Additionally, GPS is largely reliant on free line-of-sight transmission between the
device and several satellites, making it unsuited for indoor position reconstruction, which is a
vital part of both ubiquitous computing and crowd analysis.

Due to their increased proliferation and cost efficiency, wireless networks such as WiFi are a
popular alternative to GPS for indoor position reconstruction. There is a multitude of different
techniques for position reconstruction that can be applied to WiFi systems [3], which can gen-
erally be divided into techniques that model the propagation of the signals, and techniques that
attempt to ‘learn’ how to associate signals to positions from training data [4].

The latter of these techniques, often referred to as fingerprinting, performs well but cannot be
applied out-of-the-box. It requires additional hardware and a preparatory phase in order to build
a training data set that is capable of generalizing the signal strengths to positions, which might
be prohibitive cost-wise [5]–[7]. In contrast, model-based methods can function in an existing
wireless network with little to no modifications and no need for training data [3].

Model-based methods modelling the distances between access points and devices are in com-
mon use due to their ease of use and low cost, but often suffer from lower accuracy than other
methods [8]. Van Engelen, Van Lier, Takes, et al. [4], Laviola [9], and Lee, Oka, Pollakis, et
al. [10] attempt to mitigate this by applying noise-reducing filtering methods to the positions
produced by the distance-based method. Such methods increase accuracy whilst maintaining
the ease of use and low cost. This thesis aims to expand upon the methods they used, and more
thoroughly compare and analyze the use of filtering methods in order to increase the accuracy
of low-cost WiFi and distance-based position reconstruction.

In order to determine the accuracy of each method, we need to compare position estimates
produced from experimentally obtained measurements to a ground truth consisting of the actual
positions that correspond to said measurements. While such experiments can easily be performed
in a lab setting, we are particularly interested in the performance of the methods in practice. To
this end, previous experiments in indoor position reconstruction have usually been performed
on floors of common buildings with a relatively small amount of access points [4], [11]–[13]. We
perform our experiments in the Johan Cruyff ArenA, the largest stadium in the Netherlands,
with over 600 access points, making it one of the largest wireless sensor networks suitable for
position reconstruction ‘in the wild’.
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1.1 Thesis outline

This thesis is structured as follows. Chapter 2 explains the formal process of position reconstruc-
tion based on signal strength measurements that is used to obtain position estimates. Chapter 3
gives an overview of the workings of each filtering method as applied to the position estimates
obtained earlier. Chapter 4 describes the experiment performed in the ArenA in order to obtain
the measurements, along with the ways we analyze the final data. In Chapter 5 we present and
discuss the results, and we finally state our conclusions and suggestions for future research in
Chapter 6.
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CHAPTER 2

Position reconstruction

Position reconstruction using WiFi data relies on frequent (attempted) communication between
devices capable of wireless networking (which we will simply refer to as mobile devices, regardless
of actual size and mobility), and access points (which we will henceforth refer to as AP’s). While
such communication needs to be frequent when the device is actively running applications with
networking components, communication still occurs in several ways even when mobile devices
are not actively being used.

In order to initiate communications, mobile devices need to be able to find and connect to
AP’s in their vicinity. The IEEE 802.11 standard for WiFi communications [14] defines two ways
in which both mobile devices and AP’s can both locate one another. Firstly, AP’s broadcast
beacon frames (a frame is an unit of WiFi data) containing their networking information, allowing
mobile devices to recognize their presence. Secondly, mobile devices can also actively attempt
to locate AP’s by sending out frames called probe requests, containing their MAC address (an
unique identifier for the device) and other information relevant to WiFi communications. On
average, mobile devices send out anywhere between 55 and 2000 probe requests in an hour, but
this number can be much higher, depending on device build and usage [15].

The following section will describe the format and preprocessing of the measurements of the
ordinary active communications and probe requests obtained by the AP’s. The second section
will introduce the basic model used to describe the transmission of WiFi signals between mobile
devices and AP’s. The third section will use this model in the context of position reconstruction,
using trilateration. Finally, the last section will describe the optimization procedure used to
actually find the best positions given the measurements, producing a path.

2.1 AP measurement preprocessing

By having sensors in or by an AP (we will not distinguish between sensors and AP’s, and will
refer to both by the latter name), we can sniff out the frames sent to it, measuring the Received
Signal Strength Indication (RSSI) of the received signal associated with the request. These
measurements can be expressed in units of Watts, but for reasons that will become clear in
Section 2.2, we will instead use decibels-milliwatts (the signal strength in decibels with reference
to one milliwatt).

Now, let N be the amount of AP’s we are collecting measurements from. Formally, we denote
these AP’s by vectors s1, . . . , sN , with si ∈ R3 representing the x, y, and z-coordinates of the i-th
AP, expressed in meters w.r.t. some arbitrary origin. Letting k be the amount of measurements
some i-th AP has obtained for the mobile device, we associate to that AP a sequence of RSSI
measurements Pi = (Pi1 , . . . , Pik), and a sequence of corresponding measurement timestamps (in
seconds) ti = (ti1 , . . . , tik).

In order to determine the device’s position at a certain time u, we need to collect mea-
surements Pij such that tij = u; i.e. all measurements (for any AP) obtained exactly at the
specified time. However, as both the frequency with which the device sends probe requests and
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the speed at which the AP’s generate measurements are generally not known, it is often the case
that at most a single AP measured the device at any given time. To solve this, we divide the
measurements into groups representing time windows w seconds in length.

These groups are represented by a sequence of timestamps t′ = (t′1, . . . , t
′
β), with each t′i in

the middle of its window. Let β = d g−lw e (d·e denotes the ceiling function), l = min(t1‖ . . . ‖tN )
and g = max(t1‖ . . . ‖tN ) (·‖· concatenates sequences). Using this notation, we can define the
sequence of group timestamps t by stating that t′i = l+(i− 1

2 )w. 1 To this sequence of timestamps,
we finally associate a sequence M of sets of measurements alongside their AP vectors, with

Mi = {(Pjk , sj) | j, k ∈ N, (t′i −
w

2
) 6 tjk < (t′i +

w

2
)}. (2.1)

2.2 Friis’ transmission equation and path loss model

Before moving to fit the mobile device’s positions to the measurements grouped in the previous
section, we need to first model the transmission of the WiFi signals. Friis [16] proposed the
following equation for the radio transmission between two antennas:

Preceiving

Ptransmitting
=
AreceivingAtransmitting

d2λ2
, (2.2)

where Preceiving and Ptransmitting are respectively the power used by the transmitting antenna and
the signal’s power at the receiving antenna, Areceiving and Atransmitting are the effective areas of
the corresponding antennas, d is the distance between the antennas, and λ is the wavelength of
the signal. All quantities are expressed in the corresponding SI units (Watts for power, (square)
meters for distance and area).

Comtemporary literature [17]–[19] uses a slightly reworked (but equivalent [20]) version of
Equation (2.2) that incorporates the efficiency and directivity (a measure of how focused in a
single direction an antenna’s signals are) into a value for the so-called gain of the antennas:

Preceiving

Ptransmitting
= GreceivingGtransmitting

(
λ

4πd

)2

, (2.3)

where Greceiving and Gtransmitting represent the values for the gain of the corresponding antennas,
in Watts.

Equation (2.3) assumes that the signal is transmitted through free space, with no refraction

or other difficulties occurring [16]. This assumption is captured by the exponent in
(
λ

4πd

)2
.

Hata [21] proposed a transmission equation containing a parameter measuring the influence of
obstacles, by replacing this exponent by a parameter known as the path loss exponent, γ [4], [22].
This exponent is γ = 2 under free space assumptions. Situations in which the signal suffers from
reflection, diffraction, scattering or similar issues call for γ > 2. It must be noted that there also
exist conditions wherein it is possible that γ < 2 [23].

Now, having added this path loss exponent, we rewrite Equation (2.3) by moving Ptransmitting

to the right-hand side, and we simplify the equation further by expressing power and gain in
dBm (decibel-milliwatts), resulting in

Preceiving = Ptransmitting +Greceiving +Gtransmitting + 10γ log10

(
λ

4πd

)
. (2.4)

2.3 Trilateration

As said before, and as visualized by Figure 2.1, Equation (2.4) models the relation between the
distance d and the value of the signal’s power at both ends of the transmission. By applying the
theory of trilateration, we can translate such distances to actual position vectors.

1It should be noted that this method does not guarantee all the groups are equal in length, but we for our
purposes it is deemed sufficient.

4



PtransmittingPreceiving

d

Figure 2.1: The transmission of a WiFi signal between a mobile device and an AP. Equation (2.4)
allows us to estimate the distance d between them based on the decrease in the signal’s power.
Note that free space assumptions are used here (γ = 2).

Trilateration is the process of determining an object’s position by using the geometrical
properties of several simultaneous distance measurements from different measuring stations. As
visualized in Figure 2.2, the problem in two dimensions boils down to finding the intersection
between (at least) three circles around measuring stations. Algebraically, we express the problem
as finding the solution for a system of equations [24]

(x− x1)2 + (y − y1)2 = d2
1

(x− x2)2 + (y − y2)2 = d2
2

...

(x− xn)2 + (y − yn)2 = d2
n,

(2.5)

where x and y are the unknowns, xi and yi are respectively the x- and y-coordinates of the
measuring station that produced the i-th measurement, di is the i-th measurement, and n ≥ 3
is the amount of measuring stations that produced measurements.

 d1

(a) With one measurement, all
points on the circle are possible
candidates.

 d1

 d2

(b) With two measurements, the
possible candidates are reduced
to at most two points.

 d1

 d2

 d3

(c) With three measurements,
there is only a single viable can-
didate.

Figure 2.2: Geometric properties of two-dimensional trilateration, as used to locate a mobile
device based on three distance measurements d1, d2, d3. The measured distances are considered
to be noiseless, and the AP’s are not collinear.

Extending the theory to the three-dimensional setting is trivial. While the main principles
stay the same, we now need to account for the properties of spheres, instead of those of circles.
Because of this, three measurements now only narrow the candidates down to at most two, as
visualized in Figure 2.3. Four measurements are generally needed to obtain a single optimal
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position. The system of equations in Equation (2.5) is simply extended to
(x− x1)2 + (y − y1)2 + (z − z1)2 = d2

1

(x− x2)2 + (y − y2)2 + (z − z2)2 = d2
2

...

(x− xn)2 + (y − yn)2 + (z − zn)2 = d2
n,

(2.6)

where z is also an unknown, and zi is the z-coordinate of the measuring station that produced
the i-th measurement.

Figure 2.3: Geometric properties of three-dimensional trilateration. The assumptions made are
the same as those in Figure 2.2. Image used from Schmandt [25].

As the equations in Equation (2.6) are nonlinear, finding a solution is a nontrivial problem.
Analytical solutions do exist [24], [26], [27], but these only account for cases where there are
exactly three noncollinear measuring stations, and where the spheres have exactly one intersection
[28]. In practice, distance measurements are noisy, making such precise intersections a rarity.
The use of more than three or four measurements intuitively should aid in the finding of an
optimal position. Because of such constraints associated with analytical solutions, numerical
methods are generally used in order to approximate an optimal position [28].

2.4 Model fitting

The theory of trilateration as decribed in the previous section requires distance measurements
to be provided. However, the general path loss model in Equation (2.4) can only be used to
obtain a value for the distance d when the values for the gains, received and transmitting power,
and path loss exponent are known. Of these, our measurements as described in Section 2.1 only
provide values for the received power. The other values need to be estimated by some method.

We could estimate these other values, using them to obtain a value for the distance, which
we will then use to estimate a position. Instead, we modify the model in Equation (2.4) to use
absolute positions in place of distance values, giving

Preceiving = Ptransmitting +Greceiving +Gtransmitting + 10γ log10

(
λ

4π‖xt − xr‖

)
, (2.7)

where xt,xr ∈ R3 are the coordinates of the transmitting and receiving antenna, respectively,
and ‖ · ‖ is the Euclidean norm. Using positions as parameters, we can estimate these positions
alongside the other values, removing the need to perform our position reconstruction in separate
steps.
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As all values other than the path loss exponent, received power, and the two positions are
generally unknown, we simplify the model by rewriting Equation (2.7) to

Preceiving = Ptransmitting +Greceiving +Gtransmitting + 10γ log10

(
λ

4π‖xt − xr‖

)
= Ptransmitting +Greceiving +Gtransmitting + 10γ log10

(
λ

4π

)
− 10γ log10 ‖xt − xr‖

= η − 10γ log10 ‖xt − xr‖, (2.8)

where η = Ptransmitting +Greceiving +Gtransmitting + 10γ log10

(
λ
4π

)
is a bias term that needs to be

estimated alongside the actual location [4], [29].
Now, having obtained a ‘final’ model of signal transmissions, we can use this model in con-

junction with our grouped measurements from Section 2.1, and the theory of trilateration from
Section 2.3. Akin to the system in Equation (2.6), we wish to create a system of equations
for each timestamp. Using the geometric properties of trilateration as visualised in Figure 2.3,
we see that theoretically we need at least four (approximately) simultaneous measurements to
be able to pinpoint an object’s location with confidence. To this end, we prune our sequence
of measurement sets M , alongside the corresponding sequence of timestamps t, producing new
sequences M ′ = (M ′1, . . . ,M

′
β′) (which all contain at least four measurements), and the corre-

sponding timestamps T = (T1, . . . , Tβ′). Here, β′ = |{i | 1 6 i 6 β, |Mi| > 4}|, with | · | being
the set cardinality. The ordering of the timestamps in T is unchanged w.r.t. t′.

To each timestamp Ti with measurement set M ′i we now associate a system of equations,
consisting of the following equation for each (Pj , sj) ∈M ′i :

ηi − 10γ log10 ‖
[
xi yi zi

]T − sj‖ = Pj , (2.9)

where ηi, xi, yi, and zi are the unknowns. The path loss exponent is assumed to be constant
across all AP’s and measurements. 2

As our measurements are noisy, and the system of equations generally has no solution, we
aim to obtain a least squares fit of the unknowns, as is often done with trilateration problems
[4], [32], [33]. This involves finding the parameter vector θ̂i for which the sum of squared errors
for M ′i is minimal:

θ̂i ∈ arg min
θ

∑
(P,s)∈M ′i

(
P −

(
ηi − 10γ log10 ‖

[
xi yi zi

]T − s‖
))2

, (2.10)

where θ =
[
ηi xi yi zi

]T
.

2.5 Optimization

In order to approximate Equation (2.10), we need to apply some optimization method, as said
before in Section 2.3. Press, Teukolsky, Vetterling, et al. [34] describe a multitude of local and
global function optimization methods that we could apply, each with their own (dis-)advantages
and conditions. Instead of using such a general optimization method, we opt to make use of
the properties of nonlinear least squares fitting. While many general optimization methods
attempt to either approximate or do away with first and second order derivatives for the purpose
of generality, nonlinear least squares fitting involves a known model function, with oftentimes
known analytical derivatives [35]. We will therefore use a method that can use these derivatives.

Two such methods for nonlinear least squares fitting are the gradient descent and Gauss-
Newton methods. The gradient descent method attempts to find a minimum by repeatedly
moving in the direction of the steepest descent of the sum of squared errors (i.e. the direction
opposite that of the gradient), starting from an initial guess. While this method does guarantee
convergence by the definition of the gradient, it is often quite slow, and may even fail to find

2This need not be the case in practice, and other authors do in fact attempt approaches in which the path loss
exponent is estimated per sensor or measurement [4], [30], [31].
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a minimum within reasonable computational bounds [36]. The Gauss-Newton method takes a
slightly more sophisticated approach by assuming the sum of squared errors is quadratic near
the minimum, and then attempting to find said minimum using linearized least squares approx-
imations. This can result in much higher convergence rates when done with a reasonable initial
estimate, but it could also cause diverge or head towards a saddle point, resulting in a nonoptimal
solution [37].

These methods perform well in specific parts of the optimization procedure: gradient descent
in the initial stage, and Gauss-Newton in the final stage [38]. It is for this reason that there are
methods that can be interpreted as being a hybrid between these two methods, interpolating
between them each iteration. Of such hybrids, variations of the Levenberg-Marquardt method
based on work by Levenberg [39] and Marquardt [40] are in widespread use [41]. In this thesis we
will use the variation proposed by Moré [42] and as implemented in the SciPy library for Python
[43], because of its increased robustness and availability. We will only give an overview of the
‘basic’ Levenberg-Marquardt method (based on Madsen, Nielsen, and Tingleff [38], Gavin [41],
and Lourakis [44]), as applied to the computation of Equation (2.10). For a thorough discussion of
the full method and robustness modifications involved, we refer to the aforementioned literature
instead.

We can interpret the problem of least squares minimization in Equation (2.10) as the mini-
mization of a function of the form

F (x) =
1

2

m∑
j=1

f2
j (x), (2.11)

where x = θ is the parameter vector, (P1, s1), . . . , (Pm, sm) are the measurements and AP vectors

in M ′i , and fj(x) = Pj −
(
ηi − 10γ log10 ‖

[
xi yi zi

]T − sj‖
)

is the j-th error value. 3 The

Levenberg-Marquardt method specifically requires that m ≥ n, which is always satisfied in our
case.

Let f : R4 → Rm with f(x) =
[
f1(x) . . . fm(x)

]T
be a vector-valued function containing

all errors. We can then define the Jacobian J(x) of f(x) (the matrix consisting of all its first-order
partial derivatives) as

J(x) =


∂f1

∂ηi
(x)

∂f1

∂xi
(x)

∂f1

∂yi
(x)

∂f1

∂zi
(x)

...
...

...
...

∂fm
∂ηi

(x)
∂fm
∂xi

(x)
∂fm
∂yi

(x)
∂fm
∂zi

(x)



=

 (∇f1(x))
T

...

(∇fm(x))
T



=


−1

10γ

ln(10)‖v − s1‖2
(v − s1)T

...
...

−1
10γ

ln(10)‖v − sm‖2
(v − sm)T

 , (2.12)

where v =
[
xi yi zi

]T
.

Using the Jacobian, we can give the following expression for the gradient F′(x) = ∇F (x):

3The factor 1
2

is included here for the simplification of derivatives.
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F′(x) = ∇

1

2

m∑
j=1

f2
j (x)


=

m∑
j=1

fj(x) (∇fj(x))

= (J(x))
T

f(x). (2.13)

In addition to the gradient, we also need the matrix of all second partial derivatives of F : the
Hessian matrix F′′(x). For an arbitrary second partial derivative of F with a, b ∈ {ηi, xi, yi, zi},
we have

∂2F

∂a∂b
=

m∑
j=1

(
∂fj
∂a

(x)
∂fj
∂b

(x) + fj(x)
∂2fj
∂a∂b

(x)

)
. (2.14)

From this, we can derive the following expression for the Hessian:

F′′(x) = (J(x))
T

J(x) +

m∑
j=1

fj(x)f ′′j (x), (2.15)

where f ′′j (x) is the Hessian matrix of fj(x).
As with the Gauss-Newton method, we linearly approximate the error values fj(x), making

the error value Hessians f ′′j negligible, allowing us to simplify Equation (2.15) to

F′′(x) ≈ (J(x))
T

J(x). (2.16)

Using our computed gradient and approximated Hessian, we can now proceed with the
Levenberg-Marquardt method. The method, like all other nonlinear least squares methods, at-
tempts to iteratively refine the current, (k + 1)-th parameter vector xk+1 based on the previous

estimate xk, with a given initial estimate x1, which we will compute as x1 =
[
0 1

m

∑m
j=1 sT

j

]T
,

i.e. the mean of all AP’s that produced measurements at the time in question, with the bias set
to 0. As the Levenberg-Marquardt method combines gradient descent with the Gauss-Newton
method, we will first give their respective methods for obtaining xk+1.

Gradient descent updates the current estimate by moving in the direction of steepest descent,
scaled by λ > 0:

xk+1 = xk − λF′(xk). (2.17)

This method is not always computationally feasible in terms of its convergence rate. The
Gauss-Newton method is more efficient in practice, assuming the current estimate is near the
solution. It achieves this efficiency by approximating the function around the current estimate
by a quadratic function. This is done by approximating the gradient by a linear function using
its Taylor series around the current estimate:

F′(xk+1) ≈ F′(xk) + F′′(xk)(xk+1 − xk). (2.18)

Solving this for F′(xk+1) = 0 gives the Gauss-Newton update

xk+1 = xk − (F′′(xk))
−1

F′(xk). (2.19)

Levenberg [39] combines Equations (2.17) and (2.19) by introducing a so-called damping
parameter µk > 0 with given initial value µ1:

xk+1 = xk − (F′′(xk) + µkI)
−1

F′(xk), (2.20)

where I is the identity matrix. The damping parameter allows each iteration to alternate between
gradient descent (large values of µk) and Gauss-Newton (small values of µk). Marquardt [40]
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pointed out that Equation (2.20) completely neglects the Hessian F′′(xk) for large values of µk,
which is not necessarily advantageous. Even when solely using gradient descent, the Hessian can
be used to give information about the curvature of the function, by moving a greater amount in
directions where the gradient itself is smaller. This can be implemented by scaling the movement
size λ in Equation (2.17) by the Hessian:

xk+1 = xk − (F′′(xk) + µkdiag (F′′(xk)))
−1

F′(xk), (2.21)

where diag (F′′(xk)) ∈ R4×4 is the diagonal matrix with the same diagonal as F′′(xk). Expressing
this using the Jacobian gives us the final equation

xk+1 = xk −
(

(J(xk))
T

J(xk) + µkdiag
(

(J(xk))
T

J(xk)
))−1

(J(xk))
T

f(xk). (2.22)

The general idea of the Levenberg-Marquardt method now is to attempt to perform this
update, getting a new estimate x̃k+1, and to then compute the sum of squared errors again. If
the value is significantly smaller than the previous value, i.e. if F (xk)−F (x̃k+1) > εest for some
threshold εest, we accept the new estimate as xk+1 = x̃k+1. 4 Since this means we are getting
closer to a solution, we increase µk+1 w.r.t. µk by some method, such as scaling it by some factor
c↑ as µk+1 = c↑µk. On the other hand, if F (xk) − F (x̃k+1) < εest, we do not accept the new
estimate, and set xk+1 = xk. The approximation did not perform well apparently, and thus we
decrease µk+1, which we can also simply do by downscaling with a factor c↓ to µk+1 = µk

c↓
.

We continue the process like this until we either obtain convergence in the gradient (if it
approaches 0) or in the sum of squared errors. Alternatively, we can stop when we reach a
maximum amount of iterations. Figure 2.4 visualizes the iterations of the Levenberg-Marquardt
method as applied to the computation of Equation (2.10) in two dimensions.
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Figure 2.4: The progress of the Levenberg-Marquardt method for four different initial estimates,

used to find the
[
xi yi

]T
that minimizes the sum of squared errors SSE for a measurement set

M ′i . The equation used is the same as in Equation (2.10), with constant values for ηi and zi.
The green line represents the method performed with x1 = 1

m

∑m
j=1 sj .

4In practice, the sums of squared errors are normalized in some way, so the choice of εest is less problem-
dependent. We refer to aforementioned literature for methods.
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2.6 Final processing

Performing the Levenberg-Marquardt method for each measurement setM ′i , we obtain a sequence

of parameter vectors θ̂i =
[
ηi xi yi zi

]T
containing not only the coordinates we seek, but

also the bias term, which is of no interest to the sought after positions. Like the bias term,
the z-coordinates are of no interest to our problem of position reconstruction as formulated in
Chapter 1, as the altitude at which people walk does not fluctuate over time in an ordinary
building, except when moving to another floor. Accounting for stairs and other floor transitions
introduces unneccessary complexity to our method. We thus obtain a final time series of position

vectors Xi =
[
xi yi

]T
with corresponding timestamps Ti, as visualized in Figure 2.5.
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Figure 2.5: The resulting path of Xi vectors obtained by applying the Levenberg-Marquardt
method to a sample walk.
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CHAPTER 3

Filtering methods

The inherent noise encountered in WiFi-based position reconstruction requires some modifica-
tion or additional method to be applied to either the original measurements or the Xi positions
obtained through the procedure described in Chapter 2. As mentioned by Van Engelen, Van Lier,
Takes, et al. [4], opting to apply noise-reducing methods (such as the signal filtering methods in
Section 3.1) to the Xi positions is a viable option based on the knowledge that the position of a
mobile device is expected to changes at a slow rate. This is not the case for the RSSI measure-
ments, since these can fluctuate heavily because of interference or the multipath phenomenon
[45].

For the noise-reduction of the position time series, we opt to use filtering methods. Such
methods generally function relatively efficiently, due to them usually producing a filtered value
based on either preceding or (a limited amount of) surrounding values. Using those methods that
have this latter property opens up the possibility of building applications that perform (near)
real-time position reconstruction and noise filtering. 5

This chapter will discuss a variety of filtering methods, divided into signal and probabilistic
filtering methods. For each method, we will give the necessary equations and procedures to
compute a sequence of filtered positions X i from observed positions Xi.

3.1 Signal filtering

Signal filtering methods are named in such a manner because of their wide range of applications
within the area of digital signal processing. These methods can usually (but not always) be
formulated as a single equation consisting of common formulas, representing a so-called discrete-
time system [46]. Such equations do not attempt to model the process behind or the distribution
of the positions, as opposed to the methods suggested in Section 3.2, which often need to be
expressed as algorithms or procedures.

In this section we will discuss four general signal filtering methods, three of which were already
proposed by Van Engelen, Van Lier, Takes, et al. [4] for position reconstruction. We will also
discuss several variations on all these methods.

3.1.1 Exponential filtering

Exponential filtering (often known as exponential smoothing) is a widely-used approach for the
filtering of time series. Its popularity can be owed to its simplicity and high accuracy when used
for time series forecasting [47]. The simplest form of the method as applied to scalar values can
be expressed as [48]

si = αxi + (1− α)si−1, (3.1)

5While such applications are of great interest, they are beyond the scope of this thesis. Throughout this thesis
we will always make the assumption that the entirety of the data is available from the beginning.
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where 0 < α < 1 is a smoothing parameter, si and si−1 are the i- and (i − 1)-th filtered value,
and xi is the i-th observation. By assuming that the x- and y-coordinates are not codependent,
we can derive from Equation (3.1) the equation as used to obtain the filtered positions

X i = αXi + (1− α)X i−1 . (3.2)

Decreasing α in Equation (3.2) causes more of the history of the positions to be taken into
account for its filtering. This history requires some choice to be made for the initial filtered value
X 1. Some common heuristics are the following [49], [50]:

(a.) Setting it to the first observation: X 1 = X1.

(b.) Reversing the order of the observed positions, obtaining reverse filtered positions X ∗i with
X ∗1 = Xl (where l is the amount of observed positions Xi), and setting X 1 = X ∗l .

(c.) Setting it to the mean of the first p (which is usually p = 3) observations: X 1 = 1
p

∑p
i=1 Xi.

In addition to the variety of methods for choosing the initial filtered value, there are some
possible modifications to the filtering equation in Equation (3.2). These modifications involve
accounting for the irregular frequency of the time values, filtering the observations more than
once, and combining these.

Irregular time filtering Exponential filtering usually assumes the observations are spaced equally
in time. Contrary to this, intuition tells us that more recent observations should have more
weight during filtering. By introducing a time window duration τ > 0, also expressed in seconds,
we can describe a version of Equation (3.2) for irregularly spaced positions that takes the position
timestamps Ti into account [51]:

X i = αiXi + (1− αi)X i−1, (3.3)

where αi = 1− exp
(
−(Ti−Ti−1)

τ

)
.

3.1.1.1 Double exponential filtering

Simple exponential smoothing as described in Equation (3.2) does not perform very well in situ-
ations where the time series displays a steady trend. For such observations, double exponential
filtering is an apt choice, because of its adjustment for the trend [52].

Its procedure requires Equation (3.2) to be used in order to obtain first-level filtered positions
X ′i. Treating these positions like observations, the second-level filtered positions X ′′i are obtained
by performing simple exponential filtering again with X ′′1 = X ′i (which is obtained by one of the
heuristics named earlier):

X ′′i = αX ′i +(1− α)X ′′i−1 . (3.4)

Using these two levels of filtered positions, we obtain the final doubly exponential filtered
positions

X i =
(
2X ′i−X ′′i

)
+

α

1− α
(
X ′i−X ′′i

)
. (3.5)

In order to also account for irregularity in the time samples, it is sufficient to replace each α
in Equation (3.5) (and in the computation of X ′i and X ′′i ) by αi as used in Equation (3.3). 6

6X 1 needs to be defined as X1 due to the lack of a previous time value. Equation (3.5) did not require this to
be defined separately, as that equation already computes X 1 = X1.
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3.1.2 Gaussian filter

Gaussian filters are a staple in the area of image processing, where they are referred to as Gaussian
blurs, used to reduce noise for applications like edge detection and human vision modelling [53].
Those images are essentially treated like two-dimensional signals, and the end-result is obtained
by the discrete convolution of the image with a so-called sampled Gaussian function. When
applied to our sequence of positions Xi, which is a vector-valued signal, we can also express the
filter as a moving weighted average with weights sampled from the one-dimensional Gaussian

function Gσ(x) = 1
σ
√

2π
exp

(
− x2

2σ2

)
, where σ > 0 represents the scale (or standard deviation)

of the underlying Gaussian. As we use a discretely sampled Gaussian function, the sum of all
weights will not sum to 1, calling for the inclusion of a normalization constant N . This gives us
[4], [53]

X i = (
1

N
Gσ ∗X)(i)

=
1

N

∞∑
j=−∞

Gσ(j − i)Xj

=
1∑∞

k=−∞Gσ(k − i)

∞∑
j=−∞

Gσ(j − i)Xj , (3.6)

where Xj =
[
0 0

]T
if there is no j-th observed position.

As most of the Gaussian distribution lies within a certain band around the mean, we can
rewrite Equation (3.6) to the more computationally feasible (and still approximately equivalent)

X i =
1∑i+d5σe

k=i−d5σeGσ(k − i)

i+d5σe∑
j=i−d5σe

Gσ(j − i)Xj . (3.7)

Irregular time filtering As with simple exponential filtering, Gaussian filters also assume that
observations are spaced equally in time. In order to extend Equation (3.7) to account for the
irregularly sampled timestamps, we need to use the time values Tσ,i in the Gaussian functions:

X i =
1∑

k∈Tσ,i Gσ(Tk − Ti)
∑
j∈Tσ,i

Gσ(Tj − Ti)Xj , (3.8)

where Tσ,i = {k | (Ti − 5σ) 6 Tk 6 (Ti + 5σ)}.

3.1.3 Savitzky-Golay filter

The Savitzky-Golay filter is a simple filter proposed by Savitzky and Golay [54], widely used in
spectroscopy. The principle behind the filter is to fit a polynomial to a window of observations
around the observation to be filtered using linear least squares, with the observations being
assigned ‘local’ coordinates with respect to the observation to be filtered. The filtered value is
then equal to the value of the fitted polynomial in the middle of the window, i.e. at x = 0 (where
x is the independent variable of the polynomial).

While the original paper describes this process through a convolution with certain (possible
pre-computed) coefficients (thus being a type of moving average), Persson and Strang [55] show

that the coefficients c =
[
c0 . . . cκ

]T
for the best fitted polynomial c0 + c1x + · · · + cκx

κ of

degree κ, fitted to 2m + 1 subsequent and equally spaced values b =
[
b−m . . . bm

]T
with

window length m, can be computed as the least squares solution of

Vc = b, (3.9)
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where

V =


(−m)0 . . . (−m)κ

(−m+ 1)0 . . . (−m+ 1)κ

...
. . .

...
(m− 1)0 . . . (m− 1)κ

m0 . . . mκ

 , c =

c0...
cκ

 ,b =

b−m...
bm

 .
The least squares solution of the system in Equation (3.9) is computed using the Moore-

Penrose pseudoinverse of V:

c = (VTV)−1VTb. (3.10)

As the filtered value we are interested in is equal to the value of the polynomial at the
independent variable x = 0, we only require the coefficient c0 to get the filtered value s:[

s
]

=
[
1 0 . . . 0

]︸ ︷︷ ︸
(κ+1) values

(VTV)−1VTb. (3.11)

Applying this to our case, position vectors Xi, we see that we need to extend the system in
Equation (3.9) to perform a least squares fit for both the x- and y-directions of the position:

VC = Bi, (3.12)

where

C =

cx,0 cy,0
...

...
cx,κ cy,κ

 ,Bi =

XT
i−m
...

XT
i+m

 .
Using the extended system of Equation (3.12), we can give the following expression for the

filtered positions:

X i =

[1 0 . . . 0
]︸ ︷︷ ︸

(κ+1) values

(VTV)−1VTBi


T

. (3.13)

Besides the choice of window size m and polynomial degree κ, the filter requires us to decide
how the filtered positions of the observed data X1, . . . ,Xm and Xl−m+1, . . . ,Xl are computed,
where Xl is the final observation. Some common heuristics are the following:

(a.) Pad the observations with fictitious positions X−m+1, . . . ,X0 and Xl+1, . . . ,Xl+m, and
then compute the filtered positions as usual. These padded positions Xj are defined by
the mirroring of the edge they are on:

Xj =

{
X1−j if j 6 0

X2l−j+1 if j > l.
(3.14)

(b.) Similarly pad the observations with the same amount of fictitious positions, but define
them as being equal to the last ‘real’ position on their edge:

Xj =

{
X1 if j 6 0

Xl if j > l.
(3.15)

(c.) Determine the lowest and highest indices jmin = m + 1 and jmax = l − m (which can
be equal) for which Equation (3.13) can be computed without problems. Let C∗min and
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C∗max be the full coefficient matrices computed in Equation (3.13) for indices jmin and jmax

respectively. Then we compute the remaining filtered positions as

X j =


([

1 j − jmin (j − jmin)2 . . . (j − jmin)κ
]

C∗min

)T

if j < jmin([
1 j − jmax (j − jmax)2 . . . (j − jmax)κ

]
C∗max

)T

if j > jmax,
(3.16)

i.e. use the least squares fits computed at the edges to fill in all remaining indices. It
should be noted that this heuristic does require that l > 2m + 1, as at least one position
needs to be filtered using the ‘basic’ Savitzky-Golay procedure.

Irregular time filtering Extending Equation (3.13) to account for the irregular spacing of po-
sitions poses no theoretical difficulties. We merely need to change the ‘local’ coordinates in
Equation (3.12) to coordinates based on the spacing of the corresponding time values:

ViC = Bi, (3.17)

where

Vi =


(Ti−m − Ti)0 . . . (Ti−m − Ti)κ

(Ti−m+1 − Ti)0 . . . (Ti−m+1 − Ti)κ
...

. . .
...

(Ti+m−1 − Ti)0 . . . (Ti+m−1 − Ti)κ
(Ti+m − Ti)0 . . . (Ti+m − Ti)κ

 .
Similarly to the heuristic chosen for the computation of edge-case filtered positions, this

method also requires a definition for time values before or after the given sequence of time
values. We make the assumption that such undefined time values are spaced in equal intervals
starting from the edges, with the intervals equal in size to that of the two time values on that
edge:

Tj =

{
T1 − (1− j)(T2 − T1) if j 6 0

Tl + (j − l)(Tl − Tl−1) if j > l.
(3.18)

Using this heuristic and the matrices in Equation (3.17), we obtain the following equation for
the filtered position:

X i =

[1 0 . . . 0
]︸ ︷︷ ︸

(κ+1) values

(VT
i Vi)

−1VT
i Bi


T

. (3.19)

3.1.4 Median filter

Similarly to the Gaussian filter, the median filter is widely used in image processing. Its popu-
larity can be attributed to its property of reducing noise whilst preserving sharp edges [56]. The
filter operates using a moving window of size 2m+ 1 over some data sequence. The filtered value
x̂i for each data value xi is defined to be the median of the window xi−m, . . . , xi+m around that
value.

To obtain the median, we begin by sorting the window around xi, obtaining sorted indices
i1, . . . , i2m+1 such that xij 6 xij+1 for 1 6 j 6 2m+ 1. As the window is of an odd size, we see
that

x̂i = xim+1
. (3.20)

Just as with the Savitzky-Golay filter, the median filter requires some choice to be made for
the way boundaries are treated. To this end, we choose to pad the data with values x1−m, . . . , x0

and xl+1, . . . xl+m (where l is again the size of the original data), defined identically to Equa-
tion (3.15).
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The filtered position vectors are computed by applying this procedure separately to the
sequences of x- and y-coordinates, combining their filtered values into

X i =
[
x̂i ŷi

]T
. (3.21)

Irregular time filtering As with the other filters discussed so far, the median filter also assumes
equally spaced data. We opt to account for irregularly spaced data by using the weighted median
filter as described by Yin, Yang, Gabbouj, et al. [57]. To each value in the window around the
value at time i we associate positive weight values wi1 , . . . , wi2m+1

. The goal of the weighted
median filter is then to compute

x̂i ∈ arg min
θ

2m+1∑
j=1

wij |xij − θ|. (3.22)

Yin, Yang, Gabbouj, et al. [57] suggest computing this by iterating over the sorted window
values from highest to lowest, and setting the weighted median to the first value for which the
cumulative sum of the weights up to the corresponding weight is greater than or equal to the
half of the sum of all weights. This can be expressed as

x̂i = xiu , where u = max

j ∣∣∣ 1 6 j 6 2m+ 1,

2m+1∑
k=j

wik >
1

2

2m+1∑
k=1

wik

. (3.23)

It might however be the case that half of the weight sum can be obtained at a different
(preceding) value by computing the cumulative sums from the opposite direction. We compute
the final weighted median value by taking the mean of the medians computed in both directions
(which can be equal):

x̂i =
1

2
(xiu + xid), where d = min

{
j
∣∣∣ 1 6 j 6 2m+ 1,

j∑
k=1

wik >
1

2

2m+1∑
k=1

wik

}
. (3.24)

In order to use Equation (3.24), we still need to define some scheme to compute the weights
for each window, based on the (differences in) time values. We suggest two such schemes.

Gaussian weights Using the Gaussian function from Equation (3.8) and a scale parameter σ, we
can compute weights based on their distance in time to the central value of the window:

wij = Gσ(Tj − Ti). (3.25)

Shifted time differences Instead of having to introduce an additional parameter to compute the
weights, we propose a weighting scheme that only relies on the data. Let ∆T (i, j) = |Ti − Tj |.
We associate each of the sorted data values xij in the window around xi to the value ∆T (i, j),
creating a sequence D = (∆T (i, 1), . . . ,∆T (i, 2m+1)). Using these values, we define the weights
as

wij = max(D)−∆T (i, j) + min2(D), (3.26)

where min2(D) is the second smallest value in D. This term is added to guarantee that all
weights are positive.

3.2 Probabilistic filtering

While signal filtering methods are generally quite efficient, they do not use any information
about the nature of the sequence of positions. By attempting to model the way the subject
of the measurements is walking using some physical process model, we should be able to see
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that some positions are either impossible or extremely unlikely. Probabilistic filtering methods
combine the use of such a process model with the modeling of the (un)certainty in both the
process model and the observed positions.

In this section we will discuss one such probabilistic filtering method: the Kalman filter.
We will explore the basic theory of the method and some interesting variations, along with an
overview of process models used for position filtering.

3.2.1 Kalman filters

The Kalman filter, proposed by several authors but most famously by Kálmán [58], is a pro-
cedure that attempts to estimate the (hidden) state of some system governed by a (usually)
linear discrete-time process, based on its previous estimates and measurements. It has found
great success within the area of navigation and position reconstruction, being used in GPS and
spacecraft guidance [59], and can more generally be used for all kinds of time series analysis.

3.2.1.1 Basic Kalman filter

We will discuss the basic procedure largely based on Faragher [59], and Bishop and Welch [60],
but with notation more in tune with that used throughout preceding parts of this chapter.
Instead of giving a complete derivation of the filter, we will only describe the intuitive approach,
and refer to Welling [61] for the former.

The filtering procedure attempts to estimate the true, unobservable state xi ∈ Rn at a time
step i. This state is assumed to have evolved from the state at the previous time step through
the following model:

xi = Fixi−1 + Biui + wi. (3.27)

Here, Fi is the process matrix that relates the previous state xi−1 to the current state,
ui ∈ Rm is the so-called control vector containing known systematic ‘inputs’ at time i (which
are not applicable in our case, but are present in many other systems, such as the input from a
steering wheel for vehicular navigation), Bi is the control input matrix relating the control input
to its effect on the state, and wi ∼ N (0,Qi) is a random vector representing the noise in the
process for the state, drawn from the Gaussian distribution with mean 0 and covariance matrix
Qi. Control inputs and control input matrices will be omitted throughout the rest of this thesis.

As stated before, the Kalman filter uses both the previous state estimates, and observable
measurements. These measurements Xi ∈ R2 are also assumed to have been obtained from the
real system through a linear model:

Xi = Hixi + vi. (3.28)

Here, Hi is the measurement matrix that transforms the state at time i into a measurement,
and vi ∼ N (0,Ri) is a random vector representing the noise in the measuring process, with a
Gaussian distribution similar to that of wi, but with covariance matrix Ri.

The goal of the filter is to produce filtered state estimates by modeling the distribution of the
(un)certainty in the states. We model this distribution using a multivariate Gaussian probability
density function with mean x̂i (which is also the filtered estimate for time i, as it is the most
probable) and covariance matrix Pi. At each time step, we compute x̂i based on the previous
mean and covariance, and the current measurement, with some heuristic for the initial state and
covariance.

The filter computes these two state estimates in two separate stages, commonly referred to as
the prediction and update stages. During the prediction stage, the filter applies the process model
to the previous distribution given by estimates x̂i−1 and Pi−1, creating a predicted Gaussian with
mean x̂−i and covariance P−i . As in Equation (3.27), the process model at time i is represented
by the matrix Fi. By basic (multivariate) probability theory, we know that the mean of the new
Gaussian distribution obtained by applying Fi to the distribution of states is simply

x̂−i = Fix̂i−1. (3.29)
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The covariance of the new Gaussian can also be derived through similar means:

P−i = FiPi−1F
T
i + Qi, (3.30)

where Qi is the covariance matrix of the process noise in Equation (3.27).
During the update stage, the Gaussian of the prediction is combined with the measurement

Xi. The filter weighs the estimate and the measurement based on their respective uncertainties.
When the covariance matrix P−i of the prediction is generally small, it is given more weight,
and similarly for the covariance matrix Ri of the measurements. The notion of this weighing is
captured in the so-called Kalman gain matrix

Ki = P−i HT
i

(
HiP

−
i HT

i + Ri

)−1
. (3.31)

Using this, we can complete our definition of the update stage and give the equation for the
filtered mean

x̂i = x̂−i + Ki

(
Xi −Hix̂

−
i

)
. (3.32)

Instead of the usual definition for the filtered covariance matrix, we use the so-called Joseph
form as described by Brown and Hwang [62], which is numerically more stable and performs at
least as well for problems which do not mesh well with the linear and Gaussian assumptions of
the filter:

Pi = (I−KiHi)P
−
i (I−KiHi)

T + KiRiKi (3.33)

Finally, in order to obtain a filtered position vector from these estimates, we merely need to
transform the filtered mean x̂i using the measurement matrix:

X i = Hix̂i. (3.34)

Figure 3.1 contains a schematic overview of the Kalman filter procedure. As this overview
shows, a lot of parameters are used in the filter. Most of these are dependent on the process
models used, as described in the following sections.

Brownian motion model Brownian motion attempts to describe the movement of some target
by way of a purely stochastic process, and is often used for the modelling of movement in dense
human crowds [63], [64]. Such motion is a type of random walk, and each change in state can be
fully attributed to a zero-mean Gaussian distributed random variable.

The state being tracked is identically formatted to the measurements Xi, consisting of x- and
y-coordinates, and does not evolve through a process model, but through a stochastic process:

x̂i =

[
x̂i
ŷi

]
,Hi = I,Fi = I. (3.35)

While the initial mean can be defined using a simple heuristic where the first observation
is used, defining the initial covariance is less intuitive. Labbe Jr. [65] proposes setting it to
a diagonal matrix (as the covariance between different entries is hard to estimate). Entries
that are present in both the state and measurements are set to the corresponding entry in the
measurement covariance matrix R1. Other entries are set to a realistic ‘maximum’ value. As
our state and measurements contain the same type of information, we can simply define our
initialization as

x̂1 = X1,P1 = diag (R1) . (3.36)

Defining the covariance matrix for the process and measurement noise is a non-trivial and
important task, as the filter does not automatically update these. We have no reason to think
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Figure 3.1: The Kalman filter procedure. Arrows represent inputs and outputs, with arrows
going to the same place being the same input for that stage (only possibly differing in index).
The arrows have labels clarifying the data flow along that arrow. The initial filter heuristic is
only used once at the beginning of the procedure.

a measurement at one time has more uncertainty than at another time, so we define the mea-
surement covariance matrix through the same standard deviation parameter σ > 0 for each
time:

Ri = R =

[
σ2 0
0 σ2

]
. (3.37)

Labbe Jr. [66] also describes a way to compute the process noise matrix. By treating the
process as a continuous system with similarly continuous noise (i.e. noise defined at each time,
instead of at only discrete timesteps), we compute a process noise matrix by discretizing this
noise matrix. This is done by integrating the continuous noise over the time intervals between
discrete time steps.

The continuous noise depends on a spectral density parameter φ, derived from the treatment
of the noise as a signal in the frequency domain using Fourier transformations. As our true state
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is considered to remain constant, and is only varying due to noise, we can define the continuous
noise covariance matrix C by only assigning values to those elements on the diagonal which vary
solely due to noise:

C = φI. (3.38)

For consistency in notation for later process models, we also define the continuous process
matrix F′(t), which happens to be equal to the discrete variant I in this case. Using this matrix
and the continuous noise matrix, we can compute the discrete process noise covariance matrix
for use in the filter using the following equation:

Qi =

∫ ∆Ti

0

F′(t)CF′(t)Tdt (3.39)

= φ∆TiI, (3.40)

where ∆Ti = Ti − Ti−1.

Constant velocity We can also model the motion through the use of the classical Newtonian
kinematic equations. By also including velocities ẋ, ẏ, for the x- and y-coordinates respectively,
we can use these equations for the process transition from xi−1 to xi (and similarly for y):

xi = xi−1 + ∆Tiẋi−1. (3.41)

We can initialize the velocities by computing the difference between the first two observed
positions, and dividing that by the difference in their time values, giving us the following mean
state estimate vector

x̂i =


xi
ẋi
yi
ẏi

 , (3.42)

with
[
x1 y1

]T
= X1, and

[
ẋ1 ẏ1

]T
= 1

∆T2
(X2 −X1)T.

The initial estimated covariance matrix is again reliant on the measurement noise covariance
matrix (which is identical to the one in the previous section for all process models), but that is
only true for the x and y entries. As suggested in the previous section, we set the entries for the
velocities to some maximum velocity vmax:

P1 =


σ2 0 0 0
0 v2

max 0 0
0 0 σ2 0
0 0 0 v2

max

 . (3.43)

The process and measurement matrices are easily derived from Equations (3.41) and (3.42)
as

Fi =


1 ∆Ti 0 0
0 1 0 0
0 0 1 ∆Ti
0 0 0 1

 ,Hi =

[
1 0 0 0
0 0 1 0

]
. (3.44)

We compute the process noise covariance matrix as we did in the previous section. This
time, the process matrix does actually differ based on time, so we need to define the following
continuous process matrix:

F′(t) =


1 t 0 0
0 1 0 0
0 0 1 t
0 0 0 1

 , (3.45)
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along with the continuous noise covariance matrix, which assumes that the velocities only vary
because of noise:

C = φ


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 . (3.46)

We can now finally compute Qi using Equation (3.39) as

Qi = φ∆Ti


(∆Ti)

2

3
∆Ti

2 0 0
∆Ti

2 1 0 0

0 0 (∆Ti)
2

3
∆Ti

2

0 0 ∆Ti
2 1

 . (3.47)

Constant acceleration By also adding constant acceleration ẍ, ÿ to the previous model, we can
account for systematic changes in velocity. The process transition equations for x (which are
similarly formed for y) become

xi = xi−1 + ∆Tiẋi−1 +
1

2
(∆Ti)

2ẍi−1, (3.48)

ẋi = ẋi−1 + ∆Tiẍi−1, (3.49)

with (initial) mean state estimate

x̂i =


xi
ẋi
ẍi
yi
ẏi
ÿi

 , x̂1 =


x1

ẋ1

ẍ1

y1

ẏ1

ÿ1

 , (3.50)

where [
ẍ1 ÿ1

]T
=

1

∆T2

(
1

∆T3
(X3 −X2)− 1

∆T2
(X2 −X1)

)T

.

By introducing a maximum acceleration parameter amax, we can define the initial covariance
matrix similarly to Equation (3.43):

P1 =


σ2 0 0 0 0 0
0 v2

max 0 0 0 0
0 0 a2

max 0 0 0
0 0 0 σ2 0 0
0 0 0 0 v2

max 0
0 0 0 0 0 a2

max

 . (3.51)

The (discrete and continuous) process and measurement matrices follow intuitively from
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Equations (3.48) to (3.50):

Fi =



1 ∆Ti
(∆Ti)

2

2 0 0 0

0 1 ∆Ti 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆Ti
(∆Ti)

2

2

0 0 0 0 1 ∆Ti

0 0 0 0 0 1


,F′(t) =



1 t t2

2 0 0 0

0 1 t 0 0 0

0 0 1 0 0 0

0 0 0 1 t t2

2

0 0 0 0 1 t

0 0 0 0 0 1


,

Hi =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
.

(3.52)

As Ri is the same for all these process models, we need to only compute Qi. To do this, we
redefine the continuous noise covariance matrix

C = φ


0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 , (3.53)

allowing us to use Equation (3.39) again to compute

Qi = φ∆Ti



(∆Ti)
4

20
(∆Ti)

3

8
(∆Ti)

2

6 0 0 0

(∆Ti)
3

8
(∆Ti)

2

3
∆Ti

2 0 0 0

(∆Ti)
2

6
∆Ti

2 1 0 0 0

0 0 0 (∆Ti)
4

20
(∆Ti)

3

8
(∆Ti)

2

6

0 0 0 (∆Ti)
3

8
(∆Ti)

2

3
∆Ti

2

0 0 0 (∆Ti)
2

6
∆Ti

2 1


. (3.54)

3.2.1.2 Kalman smoothing

Kalman filters are recursive filters, where the estimates for time i only depend on that of time
i−1. Due to this property, the filter can have a hard time differentiating between measurements
that contain a lot of noise, and actual changes to the system. If the filter were also capable
of looking at future measurements or estimates, however, it could more accurately estimate the
state of the system by observing whether a measurement or estimate is part of a greater overall
trend.

Rauch, Striebel, and Tung [67] proposed a very simple approach to such a filter, commonly
known as the RTS smoother or the Kalman smoother. It consists of two passes over the data, the
first of which is identical to the ordinary Kalman filter. For each time step i, the mean estimate
x̂i and covariance matrix estimate Pi are kept track of. During the second pass, smoothed
estimates x̂′i and P′i are produced by passing over the first estimates backwards, beginning at
the second-to-last time step l − 1, and letting x̂′l = x̂l and P′l = Pl.

This second pass also consists of a prediction and an update stage, like the basic Kalman

filter. During the prediction stage at time step i, the smoother creates predictions x̂
′−
i+1 and P

′−
i+1

of the mean and covariance matrix respectively, at time i+ 1:

x̂
′−
i+1 = Fi+1x̂i (3.55)

P
′−
i+1 = Fi+1PiF

T
i+1 + Qi+1. (3.56)
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This predicted second covariance matrix is then used alongside the original covariance matrix
in the update stage to compute a second Kalman gain

K′i = PiF
T
i+1(P

′−
i+1)−1, (3.57)

which is then used to compute x̂′i and P′i, based on the predictions and the smoothed estimates
for i+ 1:

x̂′i = x̂i + K′i

(
x̂′i+1 − x̂

′−
i+1

)
, (3.58)

P′i = Pi + K′i

(
P′i+1 −P

′−
i+1

)
K
′T
i . (3.59)

After each such cycle, we can (again) obtain the filtered positions by using the measurement
matrix:

X i = Hix̂
′
i. (3.60)

3.2.1.3 Multi-modal Kalman filter

The Kalman filter attempts to estimate the true state of a system by assuming that some process
model is in fact the correct model for the observed data. This is often not the case, and it is
for this reason that those using a Kalman filter need to extensively compare the performance of
different process models for their data.

This process of comparing filter performance can be incorporated into the filtering process
itself. Bishop and Welch [60] describe a multi-modal Kalman filter that uses multiple models
µ1, . . . , µr (of which one is correct) at the same time by running r Kalman filters in parallel,
and defining the multi-modal estimates at time i to be a weighted combination of the individual
estimates of each model.

This weighted combination uses weights representing the probability that a certain model µj
is the correct model at time i. These probabilities are based on the likelihood f(Xi | µ) that we
observe a measurement Xi, conditioned on µ being the correct model at time i:

f(Xi | µ) =
1

(2π)
nµ
2

√
det (Cµ,i)

exp

(
−1

2
(Xi −Hµ,ix̂

−
µ,i)

TC−1
µ,i(Xi −Hµ,ix̂

−
µ,i)

)
, (3.61)

where the subscripts with µ, i represent that vector or matrix as used in model µ at time i,
nµ is the amount of dimensions of the state vector in model µ, det (·) is the determinant, and
Cµ,i = Hµ,iP

−
µ,iH

T
µ,i + Rµ,i.

With this likelihood function, after each prediction step we can compute the probability pj(i)
that µj is the correct model at time i:

pj(i) =
f(Xi | µj)pj(i− 1)∑r
k=1 f(Xi | µk)pk(i− 1)

. (3.62)

As we generally have no prior belief that some model is a better fit than another, we initialize
the probabilities for each model µj with equal initial probabilities

pj(1) =
1

r
. (3.63)

Using the probability values, we can compute the multi-modal estimates after the update
steps of all the individual Kalman filters. While Bishop and Welch assume that all models have
the same state vector, this is not the case for our models. Because of this, we cannot compute a
weighted combination of state estimates, but instead opt to compute a weighted combination of
resulting position vectors, giving

X i =

r∑
j=1

pj(i)Hµj ,ix̂µj ,i. (3.64)
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Dynamic multi-modal filter The probabilities as computed by Equation (3.62) generally converge
to fixed values, representing the correct model having been found. As Bishop and Welch describe,
this is not appropriate for systems where the choice of said correct model is changing during the
running of the filter. This can be remedied by allowing the probabilities to vary each time step.

This method operates in almost the same way as the usual multi-modal filter, but replaces
the probability in Equation (3.62) by

pj(i) =
f(Xi | µj)∑r
k=1 f(Xi | µk)

. (3.65)
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CHAPTER 4

Experiments

In order to compare the filtering methods, we apply them to experimentally obtained RSSI
measurements. For each method, we analyse its performance on these measurements, along with
the sensitivity in its parameters. The experimental setup used to obtain the measurements along
with the methods used to analyze the filters will be described in this chapter.

4.1 Experimental setup

We analyze the filtering methods based on measurements obtained from previously done exper-
iments on the 8th of February 2018. These experiments were not performed with the same goal
as this project, but are sufficient for the goals of this thesis.

4.1.1 The ArenA

The Johan Cruyff ArenA (formerly and colloquially known as the Amsterdam ArenA) is the
largest stadium in the Netherlands, with dimensions 235 × 180 × 77 metres. Its maximum
capacity is between 35, 000 and 68, 000 people, depending on the event taking place. There is a
total of 618 AP’s throughout the ArenA, of which we know the exact locations of 591. Figure 4.1
visualizes all these known AP’s, with coordinates expressed in metres with respect to the centre
of the ground floor as the origin.

4.1.2 Path walking

The experiment took place on the fourth floor of an empty ArenA. Two testers walked around
the floor with a mobile testing device for a period of time approximately 30 minutes in duration,
taking note of their location within the ArenA at specific times. The path they walked as shown
in Figure 4.2, consisted mostly of walking through the corridors. The testers also stood still by
balconies, stood between bleachers, and walked through parts of the bleachers during the final
part of the experiment.

4.1.3 Data collection

The mobile device used for testing was an Intel Edison module with a built-in wireless adapter
capable of packet injection. The Edison sent out probe requests at a constant frequency using
the 2.4 and 5 GHz frequency bands. These probe requests were picked up by the existing AP’s in
the ArenA. The AP’s, off-the-shelf Huawei models, monitored the requests (producing RSSI’s)
at a constant frequency of approximately 1 Hz, and did this each time for a duration of time
taking roughly 60 milliseconds.

At an unknown, constant frequency, each AP compiled and sent out a report of the requests,
as a UDP datagram consisting of an identifier for that AP, the MAC addresses of the request
sources and the RSSI’s. The reports were sent to a central server run by KPMG, which stored
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Figure 4.1: The distribution of AP’s throughout the ArenA. AP’s on the fourth floor are colored
orange.

Figure 4.2: The path walked through the fourth floor in the experiment.

them locally in a relational database for the experiment. KPMG filtered out these measure-
ments containing the MAC address of our testing device, and made those specific measurements
available to us.
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4.2 Performance comparison

In order to compare the performance of the filtering methods, we need to define a performance
measure based on the accuracy of the positions they produce. Let X µ

1 , . . . ,X
µ
l be the positions

produced by some filtering method (also including the plain position reconstruction described
in Chapter 2) µ, with corresponding timestamps T1, . . . , Tl. Given a ‘ground truth’ sequence of
positions X1, . . . ,Xl, we define our accuracy measure for µ as the mean Euclidean distance MED
between the positions of these two sequences:

MED(µ) =
1

l

l∑
i=1

‖Xi−X µ
i ‖. (4.1)

This formulation relies on the assumption that we have ground truth positions at the same
times as the corresponding filtered positions. Since we generally do not know where the subject
was exactly at each time Ti, we perform linear interpolation between ground truth positions at
known times, assuming constant velocity between successive positions, which fits our experimen-
tal setup.

4.2.1 Parameter optimization

All used methods rely on some number of parameters which influence that method’s accuracy. In
order to compare the accuracy of different methods, we choose to perform this comparison when
they are at their highest performance, by finding the parameters for each method such that the
MED is minimal. We compute the optimal parameters by running a bounded limited-memory
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [68] from a multitude of initial parameter
values, and using the parameters that give a minimal MED.

This method is first applied to find the optimal path loss exponent γ for the plain position
reconstruction. All subsequent filtering methods are then used on the positions obtained by the
position reconstruction using this optimal γ.

Table 4.1 contains a list of all methods and their to-be optimized parameters, along with con-
stants for some. The shorthands introduced in this table will be used interchangeably throughout
this thesis. 7

4.2.2 Statistical analysis

For each method µ in Table 4.1, we report both MED(µ), along with violin plots [70] for the
MED values of bootstrapped samples of the individual Euclidean distances ‖Xi−X µ

i ‖. All of
these are using the method with optimal parameters.

To test whether one method µ1 produces a statistically significantly different mean Euclidean
distance than another method µ2, we use a non-parametric confidence interval approach. This
approach involves drawing from a bootstrapped distribution under the null hypothesis that the
mean difference between the Euclidean distances is zero.

Let ED(µ, i) = ‖Xi−X µ
i ‖ be the Euclidean distance w.r.t. the ground truth for the i-th

position produced by method µ. We compute the differences in distance δ1, . . . , δl between the
two methods as δi = ED(µ1, i)− ED(µ2, i), and denote their mean by δ = 1

l

∑l
i=1 δi.

As the null hypothesis states that the true mean of the distribution that these differences were
drawn from is equal to zero, we change the mean of our observed differences to zero, obtaining
shifted differences δ∗1 , . . . , δ

∗
l with δ∗i = δi − δ.

We approximate the underlying distribution by now obtaining bootstrapped samples from
these shifted differences. This means we draw N8 sequences of length l with replacement from
δ∗1 , . . . , δ

∗
l and compute the means of these sequences, obtaining N means δ

∗
1, . . . , δ

∗
N . These

means approximate a distribution of mean Euclidean distance differences between µ1 and µ2

under the null hypothesis.

7The values for the maximum velocity and acceleration were based on Gómez, Marquina, and Gómez [69].
8We will report the amount of samples used for any bootstrapping method used throughout this thesis in the

captions of the relevant figures.
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Table 4.1: Methods used to produce positions (including both the plain position reconstruc-
tion scheme, as well as the filtering methods), alongside shorthands for ease of notation, and
parameters/constants.

Method Shorthand Parameters Constants

Plain position reconstruction base γ w = 1.5
Exponential filtering expon α, heuristic N/A
Irregular time exponential filtering irexp τ , heuristic N/A
Double exponential filtering doubexp α, heuristic N/A
Irregular time double exponential filtering doubirexp τ , heuristic N/A
Gaussian filter gauss σ N/A
Irregular time Gaussian filter irgauss σ N/A
Savitzky-Golay filter sav m,κ, heuristic N/A
Irregular time Savitzky-Golay filter irsav m,κ, heuristic N/A
Median filter median m N/A
Gaussian weights median filter gaussmed m,σ N/A
Shifted time differences median filter shiftmed m N/A
Brownian motion Kalman filter brown σ, φ N/A
Constant velocity Kalman filter vel σ, φ vmax = 12.0
Constant acceleration Kalman filter acc σ, φ vmax = 12.0, amax = 10.0
Brownian motion Kalman smoothing smbrown σ, φ N/A
Constant velocity Kalman smoothing smvel σ, φ vmax = 12.0
Constant acceleration Kalman smoothing smacc σ, φ vmax = 12.0, amax = 10.0
Multimodal Kalman filter mult σ, φbrown, φvel, φacc vmax = 12.0, amax = 10.0
Dynamic multimodal Kalman filter dynmult σ, φbrown, φvel, φacc vmax = 12.0, amax = 10.0

Using this distribution, we compute a bootstrapped 95% confidence interval[
P0.025(δ

∗
1, . . . , δ

∗
N ), P0.975(δ

∗
1, . . . , δ

∗
N )
]
, (4.2)

where Pα(·) is the (100α)-th percentile of the supplied sequence. If δ lies outside this confidence
interval, we can reject the null hypothesis at significance level 0.05.

We choose to also report p-values using this bootstrapped distribution. The approximate
p-value is computed as

p =
#
{
i
∣∣∣ 1 6 i 6 N and

(
−|δ| > δ

∗
i or δ

∗
i > |δ|

)}
N

, (4.3)

where #{·} is the set cardinality.

4.2.3 Sensitivity analysis

Besides looking at optimal performance, we are also interested in the influence of different param-
eters on the accuracy of a method. Randomly sampling all parameters and producing scatterplots
of the accuracy plotted against the values for a single parameter is a possible way to qualita-
tively judge the sensitivity of a method in said parameter. The same can be said of plots of the
accuracy against all possible values of one or two parameters.

The downside of these approaches is that they do not take into account any interactions
between parameters, which may downplay the influence of parameters that the method is sensitive
to. The comparison of parameters also becomes difficult when methods display highly nonlinear,
periodic or otherwise irregular behavior. Numerical global sensitivity analysis offers a measure
for the comparison of parameters that does not suffer from these issues.

Sobol [71] proposes a variance-based global sensitvity analysis method that decomposes the
variance in the output of a model (the accuracy of the method, in our case), and estimates the
contribution of each parameter at any order of interaction to this variance. This contribution
is expressed through sensitivity indices that express proportions of total variance, which are

30



computed by sampling over the parameter space and analyzing the output for each parameter
vector.

In this thesis, we focus on so-called first-order and total-order indices for each parameter,
which respectively represent the expected proportion of the total variance that would be explained
if that parameter is fixed, and the expected proportion of the variance that would remain if all
parameters but the one in question were fixed. The first-order indices only contain information
about the parameter by itself, while total-order indices contain information about all interactions
of that parameter with other parameters.

We report the indices for methods with more than one parameter, along with their accuracy
in the form of a 95% confidence interval, obtained using a normal approximation applied to
some number of resamples of the MED values computed for the sampled parameters from the
parameter space. The usual boostrapping method is not suited to sensitivity indices, as their
computation is already expensive.
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CHAPTER 5

Results

5.1 Optimal performance comparison

The optimal parameters and corresponding MED (mean Euclidean distance between position
estimates and actual positions) values for all methods are listed in Table 5.1, with corresponding
violin plots in Figure 5.1. Plots of the MED against the parameters are included in Appendix A,
and visualizations of the optimal MED paths are in Appendix B.

Table 5.1: Optimal parameters and MED for each method.

Method Optimal parameters MED

base γ = 0.3 19.15
doubexp α = 0.193, heuristic = (b.) 17.31

vel σ = 1.28× 103, φ = 303 17.11
expon α = 0.383, heuristic = (b.) 17.06

doubirexp τ = 15.2, heuristic = (b.) 17.05
acc σ = 0.767, φ = 1.53× 10−8 17.01

brown σ = 88.6, φ = 657 16.87
mult σ = 25.7, φbrown = 55.4, φvel = 51.7, φacc = 51.7 16.87

dynmult σ = 251, φbrown = 4.58× 103, φvel = 256, φacc = 1.24× 103 16.83
irexp τ = 6.57, heuristic = (b.) 16.61
smacc σ = 7.50× 103, φ = 0.151 13.44

smbrown σ = 79.2, φ = 26.3 13.39
smvel σ = 9.35× 103, φ = 254 13.38
gauss σ = 11.6 13.35

irgauss σ = 35.3 13.35
sav m = 44, κ = 2, heuristic = (c.) 12.94

irsav m = 44, κ = 2, heuristic = (c.) 12.72
shiftmed m = 51 12.11
median m = 32 12.03

gaussmed m = 33, σ = 215 12.00
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5.2 Hypothesis tests

Figure 5.2 contains the results of the hypothesis tests performed, showing which methods produce
a statistically significantly different MED than other methods. The confidence intervals computed
for these hypothesis tests are displayed in Appendix C.
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Figure 5.2: Results of the testing of the significance of the difference in MED between the method
on the row and the method on the column, computed using the confidence interval approach
described in Section 4.2.2, alongside approximated p-values. Bootstrapping was performed with
N = 1× 107.

5.3 Sensitivity indices

Figures 5.3 to 5.8 contain the first-order and total-order sensitivity indices for the parameters of
methods with more than two parameters, along with their accuracy expressed as a 95% confidence
interval through error bars. All indices were computed by sampling 5× 105 points from their
parameter space, and resampling these points 1× 103 times to compute the confidence intervals.
The lower bounds used for sampling were either the theoretical lower bound (such as m = 1 for
methods using window sizes), or a value close to zero. Upper bounds were either the theoretical
upper bound (a value close to one for the smoothing parameter α in exponential filtering), or a
value large enough to include the optimal value somewhere approximately in the middle of the
bounds.
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Figure 5.3: Sensitivity indices for the exponential filtering methods.

sav m sav κ sav heuristic savir m savir κ savir heuristic

Parameter

0.0

0.2

0.4

0.6

0.8

In
d

ex
va

lu
e

First order index

Total order index

Figure 5.4: Sensitivity indices for the Savitzky-Golay methods.
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Figure 5.5: Sensitivity indices for the weighted median filter with Gaussian weights.
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Figure 5.6: Sensitivity indices for the basic Kalman filters.
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Figure 5.7: Sensitivity indices for the Kalman smoothing methods.
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Figure 5.8: Sensitivity indices for the multimodal Kalman filters.
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CHAPTER 6

Discussion

In order to improve upon the accuracy of WiFi-based position reconstruction, we have compared
several filtering methods. From Table 5.1 and Figure 5.1 we can infer that all methods used do
increase accuracy compared to that of plain position reconstruction, but that a large amount of
methods do not produce a significantly different MED than others, roughly dividing the methods
into three tiers based on their performance. Exponential filtering methods and both the basic and
multimodal Kalman filters make up the least accurate tier, and all only improve the accuracy of
the plain method by a few metres. Kalman smoothing, Gaussian filters, and the Savitzky-Golay
filters make up the middle tier, which already improves on the previous tier by three to four
metres. Finally, the top tier consists of the median filters, adding approximately another metre
of accuracy.

The results of the hypothesis tests in Figure 5.2 support these observations. All filtering meth-
ods differ statistically significantly in accuracy compared to the plain position reconstruction,
with p < 0.001. Within the aforementioned tiers, most filtering methods display no statistically
significant difference in accuracy. Additionally, note that the paths produced by methods within
the same tier are visually quite similar as well, as seen in Appendix B, which supports the lack
of significant difference.

Of particular interest is the complexity of the methods with high performance. The three
top types of filters (median filters, Savitzky-Golay filters, and Gaussian filters) are all simple
in concept and procedure. They outperform complex methods like multimodal Kalman filters,
which combine several Kalman filters yet fail to improve significantly upon them, and Kalman
smoothing, which requires two passes in order to properly use all measurements.

We also observe that while irregular time variations are mostly statistically significantly
different than their base methods, except for irregular time double exponential filtering and
the Gaussian filter, the increase in accuracy they provide is always of the order of decimetres.
Combined with their oftentimes increased computational requirements, they do not appear to
be as viable a choice as the base methods.

From the computed sensitivity indices in Figures 5.3 and 5.4, we observe that the choice
of heuristic for initial filtered position is almost completely inconsequential, and can safely be
ignored and set to the optimal heuristics reported in Table 5.1. We can also see that the window
size and degree in Figure 5.4 display high amounts of interaction, with total-order indices at least
twice as high as the first-order indices. The indices for the degree κ are higher than those of the
window size, whilst the range of values usually used for the degree is much smaller than that of
the window size [54]. This means finding a good degree for the filter is both more important and
easier than selecting a window size.

The opposite is the case with the weighted median filter with Gaussian weights in Figure 5.5.
The window size is approximately twice as important than the other parameter, the scale of the
Gaussian. This agrees with our knowledge of the filter’s workings, as large window sizes can be
made to function similarly to smaller sizes by choosing smaller standard deviations. This causes
the weights of values that are further away to be assigned weights nearing zero.

The indices of the Kalman filters in Figure 5.6 do not differ much between σ and φ, with
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slightly higher values for σ, except for those of the Brownian motion Kalman filter. Table 5.1
suggests that the Brownian model is the most appropriate model for our data out of all process
models we compared, which explains the increased importance of a well-tuned process model,
compared to measurements. This likely has to do with the nature of the experimental walk,
which contains several instances of standing still for extended periods of time. Such motion is
better handled by a Brownian process model than by one assuming constant motion.

This increased importance of φ compared to σ is also seen across the Kalman smoothing
methods in Figure 5.7. These smoothing methods all make optimal use of the information in
the measurements, which again explains the increased importance of the process model. The
exception in this case is constant acceleration Kalman smoothing, where the opposite is the case.
We assume this stems from the inadequacy of such models for walks like ours, as is the case with
the Brownian motion Kalman filter.

The sensitivity indices of the multimodal filters in Figure 5.8 display drastically different
behaviour than those of the other methods discussed so far. All first-order indices appear to
be approximately zero, with high confidence in these values. The total-order indices are also
zero for most parameters, except for the σ and φacc of the basic multimodal Kalman filter. It
appears that φbrown and φvel are of virtually no importance compared to these two parameters.
We do notice that this might not be the case for φacc, as its confidence interval crosses zero.
9 Trusting the analysis, it would also appear that none of the parameters of the dynamic
multimodal Kalman filter are of any importance, as all total-order indices are zero, some with
large confidence intervals. We believe these results are due to a very high degree of interactions
between the parameters. This means we requires significantly larger sample sizes to reliably
compute these indices.

6.1 Limitations and future work

It should be noted that while deemed sufficient, the used experimental setup is far from ideal,
due to the ground truth relying on very subjective indications of the subject’s positions at certain
times. We have actually ran more recent experiments where we have much more confidence in
the constructed ground truth, by walking paths from AP to AP, which we can precisely pinpoint
on a floor map of the ArenA. The measurements from these experiments were not available
yet to be used at this thesis’ time of writing, due to unfinalized legal agreements. While such
measurements would be preferred for similar projects in the future, they do have the downside of
the walk not representing realistic human walking behaviour. Care should be taken to perform
experiments where such behaviour is maintained, while simultaneously constructing a reliable
ground truth.

The conditions of the setting of the walk are also problematic. While our goal was to compare
the effect of the filtering methods in a realistic setting, the experiment performed took place in
an empty ArenA. Performing walks throughout the ArenA during a concert or a football match
with tens of thousands of mobile devices communicating with the AP’s would give much more
conclusive results about the filters’ performance in practice.

Also of interest is the optimal path loss exponent γ = 0.3 we found for our data, which is a
value that is usually not encountered in literature on path loss modelling. In such literature, the
use of environments with a high amount of signal interference and refraction results in γ > 2.
We believe the unusual value most likely has to do with the quality of the ground truth data it
has been optimized with, as said ground truth has been constructed in a way prone to human
error.

Unfortunately, due to computational limitations, the sensitivity analysis was performed with
an initial sample size of 5× 105, with 1× 103 resamples for the confidence interval estimation.
While adequate for simple filters with a small amount of parameters, this seems to be too small
for complex, high-interaction methods such as the multimodal filters. Similar works should take
this into account, and perform such analyses using greater computational resources, or opt for
other, more efficient global sensitivity analysis methods than Sobol’s method.

9While individual indices can only lie between zero and one, the confidence intervals might cross these values
due to the normal approximation used.
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While not actual limitations for the scope of our research, there are interesting directions for
future work to proceed in. While our focus was on the comparison of the filtering methods on
positions obtained from simple WiFi based position reconstruction using trilateration, there is
no need to limit similar research to this approach. Studies comparing these filtering methods
should also focus on more costly methods such as fingerprinting and other approaches to position
reconstruction.

6.2 Conclusion

In this thesis, we aimed to thoroughly compare and analyze several filtering methods and their
influence on the accuracy of low-cost WiFi-based position reconstruction. All filtering methods
compared improve upon accuracy compared to the plain position reconstruction method, netting
a maximum increase in accuracy of approximately seven metres. We also explored irregular time
variations on the methods, but found no significant improvement compared to their base methods.

The median filters, which are the best performing methods, have only one or two parameters,
and their procedures rely on a single pass of the data using everyday statistics, keeping in line
with the aim of maintaining ease of use. They outperform complex methods like multimodal
Kalman filters, which combine several Kalman filters yet fail to improve significantly upon them,
and Kalman smoothing, which requires two passes in order to properly use all measurements.
Other high performers include the Savitzky-Golay and Gaussian filters, both types of moving
averages.
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APPENDIX A

Parameter plots

Figures A.1 to A.10 plot the MED against the parameter values for each filtering method (in-
cluding the plain position reconstruction). When doing so would improve legibility, we instead
plot the logarithm of the MED

Except for plots where the filtering method’s parameters have a domain with fixed bounds,
all plots use parameter values in the vicinity of the optimal value. For the two filtering methods
with four parameters each, we plot the MED against each parameter, setting the other three
parameters to their optimal values.
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Figure A.1: MED plotted against the path loss exponent for plain position reconstruction.
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Figure A.3: MED plotted against the scale of the Gaussian filters.

45



1
10

19
28

37
46

55
64

73
82

91
10
0

m

123456
κ

13
.0

14
.4

15
.8

17
.2

18
.6

20
.0

21
.4

22
.8

24
.2

25
.6

27
.0

28
.4

29
.8

31
.2

32
.6

34
.0

MED

(a
)

H
eu

ri
st

ic
(a

.)
.

1
10

19
28

37
46

55
64

73
82

91
10
0

m

13
.0

14
.4

15
.8

17
.2

18
.6

20
.0

21
.4

22
.8

24
.2

25
.6

27
.0

28
.4

29
.8

31
.2

32
.6

34
.0

MED

(b
)

H
eu

ri
st

ic
(b

.)
.

1
10

19
28

37
46

55
64

73
82

91
10
0

m

13
.0

14
.4

15
.8

17
.2

18
.6

20
.0

21
.4

22
.8

24
.2

25
.6

27
.0

28
.4

29
.8

31
.2

32
.6

34
.0

MED

(c
)

H
eu

ri
st

ic
(c

.)
.

F
ig

u
re

A
.4

:
M

E
D

p
lo

tt
ed

ag
a
in

st
th

e
w

in
d

ow
le

n
g
th

a
n

d
th

e
d

eg
re

e
fo

r
th

e
b

a
si

c
S

av
it

zk
y
-G

o
la

y
m

et
h

o
d

.

46



1
10

19
28

37
46

55
64

73
82

91
10
0

m

123456
κ

12
.0
0

13
.3
3

14
.6
7

16
.0
0

17
.3
3

18
.6
7

20
.0
0

21
.3
3

22
.6
7

24
.0
0

25
.3
3

26
.6
7

28
.0
0

29
.3
3

30
.6
7

32
.0
0

MED

(a
)

H
eu

ri
st

ic
(a

.)
.

1
10

19
28

37
46

55
64

73
82

91
10
0

m

12
.0
0

13
.3
3

14
.6
7

16
.0
0

17
.3
3

18
.6
7

20
.0
0

21
.3
3

22
.6
7

24
.0
0

25
.3
3

26
.6
7

28
.0
0

29
.3
3

30
.6
7

32
.0
0

MED

(b
)

H
eu

ri
st

ic
(b

.)
.

1
10

19
28

37
46

55
64

73
82

91
10
0

m

12
.0
0

13
.3
3

14
.6
7

16
.0
0

17
.3
3

18
.6
7

20
.0
0

21
.3
3

22
.6
7

24
.0
0

25
.3
3

26
.6
7

28
.0
0

29
.3
3

30
.6
7

32
.0
0

MED

(c
)

H
eu

ri
st

ic
(c

.)
.

F
ig

u
re

A
.5

:
M

E
D

p
lo

tt
ed

ag
ai

n
st

th
e

w
in

d
ow

le
n

g
th

a
n

d
d

eg
re

e
fo

r
th

e
ir

re
g
u

la
r

ti
m

e
S

av
it

zk
y
-G

o
la

y
m

et
h

o
d

.

47



0
20

40
60

80
10
0

12
0

14
0

m

12141618202224 MED

(a
)

B
a
si

c
m

ed
ia

n
fi
lt

er

12
.0
00

12
.7
99

13
.5
98

14
.3
97

15
.1
96

15
.9
94

16
.7
93

17
.5
92

18
.3
91

19
.1
90

19
.9
89

20
.7
87

MED

(b
)

W
ei

g
h
te

d
m

ed
ia

n
fi
lt

er
w

it
h

G
a
u
ss

ia
n

w
ei

g
h
ts

0
20

40
60

80
10
0

12
0

14
0

m

121314151617 MED

(c
)

W
ei

g
h
te

d
m

ed
ia

n
fi
lt

er
w

it
h

sh
if

te
d

ti
m

e
d
iff

er
-

en
ce

s

F
ig

u
re

A
.6

:
M

E
D

p
lo

tt
ed

ag
ai

n
st

th
e

w
in

d
ow

le
n

g
th

fo
r

th
e

m
ed

ia
n

fi
lt

er
s,

a
lo

n
g

w
it

h
th

e
sc

a
le

fo
r

th
e

w
ei

g
h
te

d
fi

lt
er

w
it

h
G

a
u

ss
ia

n
w

ei
g
h
ts

.

48



1.
22
71

1.
28
62

1.
34
54

1.
40
45

1.
46
36

1.
52
28

1.
58
19

1.
64
11

1.
70
02

1.
75
94

1.
81
85

log10MED

(a
)

B
ro

w
n
ia

n
m

o
ti

o
n

1.
23
34

1.
24
60

1.
25
86

1.
27
12

1.
28
38

1.
29
65

1.
30
91

1.
32
17

1.
33
43

1.
34
69

1.
35
96

log10MED

(b
)

C
o
n
st

a
n
t

v
el

o
ci

ty

17
.0
14

17
.2
26

17
.4
38

17
.6
50

17
.8
62

18
.0
74

18
.2
86

18
.4
98

18
.7
10

18
.9
22

MED

(c
)

C
o
n
st

a
n
t

a
cc

el
er

a
ti

o
n

F
ig

u
re

A
.7

:
M

E
D

p
lo

tt
ed

ag
ai

n
st

th
e

n
o
is

e
sp

ec
tr

a
l

d
en

si
ty

a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

fo
r

th
e

b
a
si

c
K

a
lm

a
n

fi
lt

er
.

49



1.
12
67

1.
16
58

1.
20
49

1.
24
40

1.
28
31

1.
32
21

1.
36
12

1.
40
03

1.
43
94

1.
47
85

1.
51
76

log10MED

(a
)

B
ro

w
n
ia

n
m

o
ti

o
n

13
.3
77

14
.2
95

15
.2
12

16
.1
30

17
.0
47

17
.9
65

18
.8
83

19
.8
00

20
.7
18

21
.6
35

22
.5
53

MED

(b
)

C
o
n
st

a
n
t

v
el

o
ci

ty

13
.4
33

13
.6
19

13
.8
04

13
.9
90

14
.1
75

14
.3
61

14
.5
46

14
.7
32

14
.9
18

15
.1
03

15
.2
89

MED

(c
)

C
o
n
st

a
n
t

a
cc

el
er

a
ti

o
n

F
ig

u
re

A
.8

:
M

E
D

p
lo

tt
ed

ag
ai

n
st

th
e

n
o
is

e
sp

ec
tr

a
l

d
en

si
ty

a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

fo
r

th
e

K
a
lm

a
n

sm
o
o
th

in
g

m
et

h
o
d

s.

50



0
20

40
60

80
10
0

σ

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

log10MED

(a
)
φ
b
ro

w
n

=
5
5
.3

7
,φ

v
e
l

=
5
1
.7

2
,φ

a
c
c

=
5
1
.7

2

0
20

40
60

80
10
0

φ
b
ro
w
n

17181920212223 MED

(b
)
σ

=
2
5
.7

2
,φ

v
e
l

=
5
1
.7

2
,φ

a
c
c

=
5
1
.7

2

0
20

40
60

80
10
0

φ
ve
l

16
.8
50

16
.8
55

16
.8
60

16
.8
65

16
.8
70

16
.8
75

16
.8
80

MED

(c
)
σ

=
2
5
.7

2
,φ

b
ro

w
n

=
5
5
.3

7
,φ

a
c
c

=
5
1
.7

2

0
20

40
60

80
10
0

φ
ac
c

2040608010
0

12
0

MED

(d
)
σ

=
2
5
.7

2
,φ

b
ro

w
n

=
5
5
.3

7
,φ

v
e
l

=
5
1
.7

2

F
ig

u
re

A
.9

:
M

E
D

p
lo

tt
ed

ag
ai

n
st

si
n
gl

e
p

a
ra

m
et

er
s

o
f

th
e

m
u

lt
im

o
d

a
l

K
a
lm

a
n

fi
lt

er
,

se
tt

in
g

o
th

er
p

a
ra

m
et

er
s

to
th

ei
r

o
p

ti
m

a
l

va
lu

es
.

51



0
10
0

20
0

30
0

40
0

50
0

σ

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

log10MED

(a
)
φ
b
ro

w
n

=
4
5
7
5
.8

1
,φ

v
e
l

=
2
5
5
.5

6
,φ

a
c
c

=
1
2
3
5
.1

2

40
00

42
50

45
00

47
50

50
00

52
50

55
00

57
50

60
00

φ
b
ro
w
n

16
.8
30

16
.8
32

16
.8
34

16
.8
36

16
.8
38

16
.8
40

MED

(b
)
σ

=
2
5
1
.3

7
,φ

v
e
l

=
2
5
5
.5

6
,φ

a
c
c

=
1
2
3
5
.1

2

0
10
0

20
0

30
0

40
0

50
0

φ
ve
l

16
.8
30

16
.8
35

16
.8
40

16
.8
45

16
.8
50

16
.8
55

16
.8
60

MED

(c
)
σ

=
2
5
1
.3

7
,φ

b
ro

w
n

=
4
5
7
5
.8

1
,φ

a
c
c

=
1
2
3
5
.1

2

10
00

11
00

12
00

13
00

14
00

15
00

φ
ac
c

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

log10MED
(d

)
σ

=
2
5
1
.3

7
,φ

b
ro

w
n

=
4
5
7
5
.8

1
,φ

v
e
l

=
2
5
5
.5

6

F
ig

u
re

A
.1

0:
M

E
D

p
lo

tt
ed

ag
ai

n
st

si
n

gl
e

p
ar

am
et

er
s

o
f

th
e

d
y
n

a
m

ic
m

u
lt

im
o
d

a
l

K
a
lm

a
n

fi
lt

er
,

se
tt

in
g

o
th

er
p

a
ra

m
et

er
s

to
th

ei
r

o
p

ti
m

a
l

va
lu

es
.

52



APPENDIX B

Path visualizations

Figure B.1 visualizes the paths obtained by each method using optimal parameter settings. In
all these figures the ground truth is colored green, while the estimated path is orange.
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APPENDIX C

Hypothesis confidence intervals

Figure C.1 plots histograms of the bootstrapped differences between two filtering methods under
the null hypothesis, alongside the 95% confidence interval (colored purple) and the actual ob-
served mean difference (colored blue). Histograms where the observed value does not lie within
the confidence interval are colored green to signifiy statistical significance of the observation.
Histograms where this is not the case are colored orange.
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[42] J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and theory”, in Pro-
ceedings of the Biennial Conference Held at Dundee, G. A. Watson, Ed., Springer, Berlin,
Heidelberg, 1977, pp. 105–116. doi: 10.1007/BFb0067700.

[43] E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python,
2001. [Online]. Available: http://www.scipy.org/ (visited on 05/18/2018).

[44] M. I. A. Lourakis, “A brief description of the Levenberg-Marquardt algorithm implemented
by levmar”, Institute of Computer Science, Foundation for Research and Technology -
Hellas, Heraklion, Crete, Tech. Rep., 2005.

[45] S. Thummalapalli, “Wi-Fi indoor positioning”, MSc thesis, Halmstad University, 2012,
p. 49.

[46] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete Time Signal Processing, 2nd ed.
New Jersey: Prentice Hall, 1999, isbn: 0137549202.

[47] S. Makridakis, M. Hibon, and C. Moser, “Accuracy of forecasting: An empirical investiga-
tion”, Journal of the Royal Statistical Society. Series A (General), vol. 142, no. 2, p. 97,
1979. doi: 10.2307/2345077.

[48] E. S. Gardner, “Exponential smoothing: The state of the art”, Journal of Forecasting, vol.
4, no. 1, pp. 1–28, 1985. doi: 10.1002/for.3980040103.

[49] S. Makridakis and M. Hibon, “Exponential smoothing: The effect of initial values and loss
functions on post-sample forecasting accuracy”, International Journal of Forecasting, vol.
7, no. 3, pp. 317–330, Nov. 1991. doi: 10.1016/0169-2070(91)90005-G.

63

http://dx.doi.org/10.1016/J.COMNET.2006.11.007
http://dx.doi.org/10.1016/j.comnet.2006.11.018
http://dx.doi.org/10.1016/j.comnet.2006.11.018
http://dx.doi.org/10.1137/050624935
http://dx.doi.org/10.2307/43633451
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1007/BFb0067700
http://www.scipy.org/
http://dx.doi.org/10.2307/2345077
http://dx.doi.org/10.1002/for.3980040103
http://dx.doi.org/10.1016/0169-2070(91)90005-G
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