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Abstract

To build a theory of intention revision for agents operating in
stochastic environments, we need a logic in which we can ex-
plicitly reason about their decision-making policies and those
policies’ uncertain outcomes. Towards this end, we propose
PLBP, a novel probabilistic temporal logic for Markov De-
cision Processes that allows us to reason about finite traces
and policies of bounded size. The logic is designed so that
its expressive power is sufficient for the intended applica-
tions, whilst at the same time possessing strong computa-
tional properties. We prove that the satisfiability problem for
our logic is decidable, and that its model checking problem
is PSPACE-complete. This allows us to e.g. algorithmically
verify whether an agents’ intentions are coherent, or whether
a specific policy satisfies safety and/or liveness properties.

To design intelligent and autonomous agents, it is impor-
tant to develop a theory of intention revision, a topic re-
ceiving increased interest in recent decades. As observed by
(Shoham 2009) and subsequent work, a primitive yet impor-
tant kind of intention is that of commitment to perform an
action at a specific time. This already comes with nontrivial
complications, involving temporal reasoning about the pre-
and postconditions of actions. To build a formal framework
capable of dealing with this notion of intention, a natural
approach is to start with an appropriate underlying temporal
logic, as done by (Icard, Pacuit, and Shoham 2010; van Zee
et al. 2020).

In order to build a theory of intention revision for agents
operating in stochastic environments using behavioural poli-
cies, we require an appropriate probabilistic temporal logic
on which to build the model. Such a logic should allow
us to reason about the execution, precondition and (possi-
bly many) postconditions of actions and policies. For practi-
cal purposes, the logic should possess strong computational
properties such as efficient (or at least, decidable) model
checking and satisfiability, so that we can e.g. algorithmi-
cally verify properties of policies and compute whether cer-
tain logical inferences are valid. Existing probabilistic tem-
poral logics in the literature do not satisfy these desiderata:
they do not allow such reasoning, and they generally high
complexity/undecidable model checking and satisfiability.
Furthermore, all of these logics are interpreted over infinite
traces, while finite traces are both sufficient and more natural
for most applications in AI.

The contribution of this paper is the introduction of
the Probabilistic Logic of Bounded Policies (PLBP), a
novel probabilistic temporal logic fitting our desiderata, in-
terpreted over finite traces and bounded-time policies in
Markov Decision Processes. The logic allows for both rea-
soning about specific actions/policies as well as the exis-
tence of policies satisfying certain properties. The model
checking problem for PLBP is PSPACE-complete, and the
satisfiability problem is decidable in 3EXPTIME. The nov-
elty of the logic lies in the fact that it enables us to express a
host of properties important for both general applications in
AI, as well as for our intended applications, while simulta-
neously maintaining strong computational properties, which
is uncommon amongst probabilistic temporal logics.

PLBP is defined relative to a countably infinite set Prop
of propositional variables and a finite set A of actions. To
each action a ∈ A we associate a precondition prea, which
is a conjunction of literals over Prop, and a finite nonempty
list Posta of possible postconditions, which are also con-
junctions of literals. We refer to the ith postcondition of a
as posta,i. We require postconditions of an action a to be
mutually inconsistent in the standard propositional sense.

Definition 1 (MDP) A Markov decision process (MDP)
over A is a tuple M = ⟨S, P, V ⟩, where S is the set of
states, P : S × A ⇀ [0, 1]S is the partial probabilistic tran-
sition function with P (s, a) a probability distribution (when-
ever defined), and V : S → 2Prop is the valuation.

These are required to satisfy the following conditions.
First, for all s ∈ S, there is some a ∈ A such that s |= prea
in the standard propositional sense. Second, Ps,a is defined
iff s |= prea. Third, given Ps,a defined, (i) for all t ∈ S such
that Ps,a(t) > 0, there is a unique posta,i in Posta such that
t |= posta,i, and (ii) for all posta,i in Posta there is a unique
t such that Ps,a(t) > 0 and t |= posta,i.

The first condition states that MDPs have no deadlocks, and
the other conditions ensure that pre- and postconditions are
meaningful: an action is executable precisely when the pre-
condition holds, and the possible outcomes of an action are
precisely the postconditions.

Our logic will be built around the notion of an n-step pol-
icy, telling the agent how to act for n time steps in a mem-
oryful manner. While such policies might seem restrictive
compared to more standard notions of policy considered in



the literature, it suffices for our intended applications. And
importantly, while n-step policies are still memoryful (in
a bounded sense), the amount of n-step policies for some
number of steps from a certain state in a finite MDP will
always be finite, in contrast to general memoryful policies.
This is an important property that is used in in proving the
decidability of the satisfiability problem.
Definition 2 (n-step policies) Given an MDP M and n ⩾
0, an n-step policy is a pair ⟨s, π⟩ where s ∈ S is referred to
as its initial state, and π : S⩽n

s → A is a function such that
sk |= preπ(s1···sk) for all s1 · · · sk ∈ S⩽n

s . By slight abuse
of notation we usually write πs instead of the pair ⟨s, π⟩ or
the function π in order to make the initial state explicit.

For an n-step policy πs, we define the set Paths(πs) as

{s1a1 · · · snansn+1 | s1 = s and πs(s1s2 · · · si) = ai

and P (si, ai)(si+1) > 0 for all 1 ⩽ i ⩽ n}.
Given an n-step policy πs, its path distribution is the
probability distribution µM,s

π over Paths(πs) defined as
µM,s
π (s1a1 · · · snansn+1) =

∏n
i=1 P (si, ai)(si+1). This ex-

tends to sets of paths in the standard way by summing.
Whenever it is clear from the context, we drop the M from
the superscript.

Definition 3 (Syntax & semantics) The language of PBLP
is inductively defined by the grammar

φ ::= ⊥ | x | φ ∧ φ | ¬φ | ♢n
▷◁rΦ

n+1,

Φ1 ::= φ

Φn+1 ::= φ | doa | Φn+1 ∧ Φn+1 | ¬Φn+1 | XΦn,

where x ∈ Prop, a ∈ A , n ⩾ 1, r ∈ Q∩ [0, 1], and ▷◁ ∈ {<
,=, >}. Formulas φ are referred to as state formulas, and
formulas Φn are referred to as n-path formulas (or more
generally, path formulas).

Given an MDP M, the semantics of PBLP is defined via
simultaneous induction over state and path formulas. Propo-
sitional variables, Booleans and ⊥ are interpreted as stan-
dard, so we only specify the semantics of the other for-
mulas. For state formulas, we have for states s in M that
s |= ♢n

▷◁rΦ iff there exists an n-step policy πs such that
µs
π({s ∈ Paths(πs) | s |= Φ}) ▷◁ r. For path formulas, we

have for a path s = s1a1 · · · an−1sn that s |= φ ⇐⇒ s1 |=
φ, s |= doa ⇐⇒ a1 = a, and s |= XΦ ⇐⇒ sX |= Φ,
where sX = s2a2 · · · sn.

The modal formula ♢n
▷◁rΦ states that “the agent can act in

the next n steps in such a way that Φ will hold with probabil-
ity ▷◁ r,” doa states that “the agent will now execute a,” and
X stands for the next-time operator. Note that we can define
a universally quantified modality □n

▷◁r as an abbreviation in
the standard way.

General examples of what one can express with this logic
include e.g. prea∧□1

⩾0.6(doa → Xφ) stating “the agent can
do a, and doing so causes φ to hold afterwards with prob-
ability at least 0.6,” and ♢1

=1X□
1
=1X¬φ, stating “the agent

can act now such that it becomes guaranteed that no matter
how she acts in the next step, φ will not hold.” Of particular
interest to our intended applications are the following two
examples.

First, note that we can express properties of specific poli-
cies as well by making use of postconditions. E.g. consider
a 2-step policy saying to do a now (with two postcondi-
tions), and afterwards b1 if we got the first postcondition
of a, otherwise b2. We can express in PBLP that under this
policy the agent will be in a state satisfying φ with probabil-
ity 0.5 with the formula ♢2

=0.5(doa ∧
∧

i=1,2 X(posta,i →
dobi) ∧ XXφ). Second, given a finite set I of intentions
as ‘commitments of actions towards time’, i.e. pairs ⟨a, t⟩
of actions and time steps, it is important to be able to de-
termine whether adopting these intentions is coherent w.r.t.
the agent’s beliefs, in the sense laid out by (Shoham 2009).
Representing the agent’s beliefs as a set Γ of formulas, we
can formulate coherence of I with respect to Γ through de-
termining the satisfiability of Γ together with execθ(I) =
♢tmax

⩾θ

∧
⟨a,t⟩∈I X

tdoa, where tmax = max⟨a,t⟩∈I t. The re-
sulting notion of coherence satisfies (stochastic generalisa-
tions of) the desiderata listed by (Shoham 2009).

Our logic possesses decidable model checking and sat-
isfiability. Model checking is the problem of determining
for an MDP, state s and formula φ whether s |= φ. We
have a nondeterministic polynomial-space algorithm decid-
ing this problem, giving us inclusion in PSPACE (since
NPSPACE = PSPACE). We also have PSPACE-hardness
by a reduction from QSAT inspired by (Bulling and Jam-
roga 2010). However, instead of the strategic setting of their
logic, where a verifier has a strategy enforcing the ‘yes’ state
if and only if the formula is satisfiable, we work in a stochas-
tic setting where the agent has a policy reaching the ‘yes’
state with probability 1 if and only if the QBF formula is
satisfiable.
Theorem 1 The model checking problem for PBLP is
PSPACE-complete.

The satisfiability problem is that of determining for an in-
put formula φ whether there exists an MDP and s such that
s |= φ. Noting that PBLP has the bounded model property
by a standard unravelling argument, our algorithm for this
problem proceeds by iterating over state sets S up to the re-
quired bound and then determining whether there is a P such
that the resulting MDP satisfies φ by determining whether a
certain existential first-order logic formula is true in the the-
ory of real-closed fields. The boundedness of both traces and
policies is crucial to the procedure.
Theorem 2 The satisfiability problem for PBLP is decid-
able in 3EXPTIME.
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