
Probabilistic Temporal Logic for Reasoning about Bounded Policies

Nima Motamed1 , Natasha Alechina1 , Mehdi Dastani1 , Dragan Doder1 and Brian Logan1,2

1Utrecht University
2University of Aberdeen

{n.motamed, n.a.alechina, m.m.dastani, d.doder, b.s.logan}@uu.nl

Abstract
To build a theory of intention revision for agents
operating in stochastic environments, we need a
logic in which we can explicitly reason about their
decision-making policies and those policies’ uncer-
tain outcomes. Toward this end, we propose PLBP,
a novel probabilistic temporal logic for Markov De-
cision Processes that allows us to reason about poli-
cies of bounded size. The logic is designed so that
its expressive power is sufficient for the intended ap-
plications, whilst at the same time possessing strong
computational properties. We prove that the satisfia-
bility problem for our logic is decidable, and that its
model checking problem is PSPACE-complete. This
allows us to e.g. algorithmically verify whether an
agent’s intentions are coherent, or whether a specific
policy satisfies safety and/or liveness properties.

1 Introduction
To design and develop intelligent and autonomous agents, it
is essential to build a framework describing when and how
they act. Such a framework should allow agents to commit
to certain actions and to revise their commitments later on.
Creating such a framework, therefore, requires the study of
intention revision, a topic receiving increased interest in recent
decades [Cohen and Levesque, 1990; Rao and Georgeff, 1991;
van der Hoek et al., 2007; Shoham, 2009; Icard et al., 2010;
van Ditmarsch et al., 2011; van Zee et al., 2020].

As observed by [Shoham, 2009], a primitive yet impor-
tant kind of intention is that of commitment to perform an
action at a specific time. This already comes with non-
trivial complications, involving temporal reasoning about
the pre- and postconditions of actions. To build a for-
mal framework capable of dealing with this notion of in-
tention, a natural approach is to start with an appropriate
underlying temporal logic, as done by [Icard et al., 2010;
van Zee et al., 2020]. In their work, actions are deterministic,
with a single outcome.

For many practical applications, agents are expected to
operate using behavioral policies in stochastic environments
where actions have uncertain, nondeterministic outcomes. So
in order to study intention revision using methods similar to
those of [Icard et al., 2010; van Zee et al., 2020], we require

an appropriate probabilistic temporal logic on which to build
the model. Such a logic should allow us to reason about the
execution, precondition, and (possibly many) postconditions
of actions and policies. And in order to be useful in practice,
the logic should possess strong computational properties such
as efficient (or at least, decidable) model checking and satis-
fiability, so that we can e.g. algorithmically verify properties
of policies and compute whether certain logical inferences are
valid.

Probabilistic temporal logics in wide use include PCTL
[Hansson and Jonsson, 1994], pCTL* [Aziz et al., 1995],
PATL/PATL* [Chen and Lu, 2007], and Probabilistic Strategy
Logic [Aminof et al., 2019]. None of these logics fit our
desiderata. First, they do not allow us to reason about pre- and
postconditions of specific actions. Second, they generally have
either high complexity or even undecidable model checking.
Note that the decidability of the satisfiability problem for any
of these logics would imply that of PCTL, which is a known
open problem, and so we cannot get decidable satisfiability for
these logics without severe restrictions. Third, from a more
practical point of view, all of these logics are interpreted over
infinite traces, while finite traces are both sufficient and more
natural for most applications in AI (see e.g. [Artale et al.,
2019]).

The contribution of this paper is the introduction of the
Probabilistic Logic of Bounded Policies (PLBP), a novel prob-
abilistic temporal logic fitting our desiderata, interpreted over
finite traces and bounded-time policies in Markov Decision
Processes. The logic allows for both reasoning about specific
actions/policies, as well as the existence of policies satisfying
certain properties. We prove that the model checking problem
for PLBP is PSPACE-complete, that it possesses the small
model property, and that the satisfiability problem is decidable
with a 2EXPSPACE algorithm. The novelty of the logic lies
in the fact that it enables us to express a host of properties
important for both general applications in AI, as well as for
our intended applications, while simultaneously maintaining
strong computational properties, which is uncommon amongst
probabilistic temporal logics.

2 Syntax and Semantics of PLBP
PLBP is defined relative to a countably infinite set Prop of
propositional variables and a finite set A of actions. To each
action a ∈ A we associate a precondition prea, which is a

conjunction of literals over Prop, and a finite nonempty list
Posta of possible postconditions, which are also conjunctions
of literals. Intuitively, the precondition of an action is precisely
what must be satisfied so that the action can be executed, and a
postcondition of an action is one of its possible outcomes, i.e.
which is made true after executing the action. We refer to the
ith postcondition of a as posta,i. We require postconditions
of an action a to be mutually inconsistent, i.e. posta,i and
posta,j cannot be simultaneously true for all i ̸= j, meaning
that there is a literal in posta,i for which its negation is in
posta,j . We refer to actions with a single postcondition as
deterministic.

Example 1 (Running example). Mary is a final-year student
in Artificial Intelligence. In order to graduate, she needs to
pass her exam on methods in AI research. She’s not completely
sure yet what she wants to do: she can try to graduate and
then apply for a Ph.D. position or for a position in industry,
but part of her is also considering the possibility of going
straight for a position in industry.

There are several things she can do. She can try to study
hard for the exam, but she can also take it easy and try the
exam unprepared. If she fails the exam, she can try again next
year. If she passes, she can then apply for a Ph.D. position or
a position in industry, She can also just apply straight for a
position in industry.

We formalize Mary’s story through propositional variables
pass, inPhD and inIndustry. The actions are study, takeEasy,
applyIndustry and applyPhD. The preconditions are
• prestudy = ¬pass ∧ ¬inIndustry ∧ ¬inPhD,
• pretakeEasy = ¬pass ∧ ¬inIndustry ∧ ¬inPhD,
• preapplyIndustry = ¬inIndustry ∧ ¬inPhD, and
• preapplyPhD = pass ∧ ¬inIndustry ∧ ¬inPhD.

The postconditions are
• Poststudy = ⟨pass,¬pass⟩,
• PosttakeEasy = ⟨pass,¬pass⟩,
• PostapplyIndustry = ⟨inIndustry,¬inIndustry⟩, and
• PostapplyPhD = ⟨inPhD,¬inPhD⟩.

We will write f : X ⇀ Y to denote that f is a partial
function from X to Y , and write f(x)↓ to denote that f is
defined on input x ∈ X . Given a set X , some x ∈ X and
n ⩾ 1, we write Xn

x for the set of all sequences in X of
length n starting with x, and we write X⩽n

x =
⋃n
k=1X

k
x .

Finally, we write ∆(X) for the set of all finitely supported
(discrete) probability distributions on X , i.e. those probability
distributions D : X → [0, 1] such that D(x) > 0 for only
finitely many x.

Definition 1 (MDP). A Markov decision process (MDP) over
A is a tuple M = ⟨S, P, V ⟩, where S is the set of states,
P : S×A ⇀ ∆(S) is the partial probabilistic transition func-
tion, and V : S → 2Prop is the valuation. We often abbreviate
P (s, a) by Ps,a. These are required to satisfy the following
conditions.

(i) For all s ∈ S, there is some a ∈ A such that s |= prea
1

(or by the following condition, equivalently Ps,a↓).

1Here, |= is a standard classical satisfaction relation, that is, s |=
x iff x ∈ V (s) for x ∈ Prop, s |= ¬φ iff s |̸= φ, and finally,
s |= φ ∧ ψ iff both s |= φ and s |= ψ.

(ii) Ps,a↓ iff s |= prea.

(iii) Given Ps,a↓,
(iii.i) for all t ∈ S such that Ps,a(t) > 0, there is a
unique posta,i in Posta such that t |= posta,i, and
(iii.ii) for all posta,i in Posta there is a unique t such that
Ps,a(t) > 0 and t |= posta,i.

Condition (i) states that MDPs have no deadlocks, which
we include as it allows us to present the following definitions
in a cleaner way. In our examples we will consider MDPs that
technically do not satisfy this condition: this is not a problem,
since we can add in a special deterministic ‘do nothing’ action
which can be executed at any deadlocking state. Conditions
(ii) and (iii) ensure that pre- and postconditions are meaning-
ful: an action is executable precisely when the precondition
holds, and the possible outcomes of an action are precisely the
postconditions.

Example 2 (Running example, continued). An example MDP
describing Mary’s story using the actions given in Example 1
is M = ⟨S, P, V ⟩, where S = {sstudent, spass, sindustry, sPhD},
respectively denoting the states in which Mary is still a stu-
dent, in which she passed the exam (and therefore gradu-
ated), in which she got a position in industry, and finally, in
which she got a Ph.D. position. The valuation V is given
by V (sstudent) = ∅, V (spass) = {pass}, V (sindustry) =
{inIndustry}, and V (sPhD) = {inPhD}. The partial prob-
abilistic transition function P is defined (for all executable
actions according to the preconditions) as
• P (sstudent, study)(sstudent) = 0.2, and
P (sstudent, study)(spass) = 0.8 (Mary is likely to pass
when studying),

• P (sstudent, takeEasy)(sstudent) = 0.7, and
P (sstudent, takeEasy)(spass) = 0.3 (Mary is likely to fail
when taking it easy),

• P (sstudent, applyIndustry)(sstudent) = 0.8,
P (sstudent, applyIndustry)(sindustry) = 0.2 (Mary is un-
likely to just get into industry),

• P (spass, applyIndustry)(spass) = 0.4,
P (spass, applyIndustry)(sindustry) = 0.6 (with a degree
Mary has reasonable odds of getting into industry),

• P (spass, applyPhD)(spass) = 0.1,
P (spass, applyPhD)(sPhD) = 0.9 (Mary will almost surely
get into a Ph.D. if she applies).

Our logic will be built around the notion of a bounded
policy, telling the agent how to act for a specified number of
timesteps in a memoryful manner. These allow us to reason
about the probabilities of sequences of states up to a certain
length. While such policies might seem restrictive compared
to more standard notions of policy considered in the literature,
it suffices for our intended applications, as we will comment
on at the end of this section. And importantly, while bounded
policies are still memoryful (in a bounded sense), the amount
of n-step bounded policies from a certain state in a finite MDP
will always be finite, in contrast to general memoryful policies.
This is an important property that we will use in proving the
decidability of the satisfiability problem in Section 4.

On a similar note, we also restrict ourselves to deterministic
policies, as they are simple and sufficient for most applica-

tions (note e.g. the result by [Puterman, 1994] showing the
guaranteed existence of optimal deterministic policies).

Definition 2 (Bounded policies). Given an MDP M and n ⩾
1, an n-step M-policy is a pair ⟨s, π⟩ where s ∈ S is referred
to as its initial state (and we say the policy is from s), and
π : S⩽n

s → A is a function such that sk |= preπ(s1···sk) (or
equivalently P (sk, π(s1 · · · sk))↓) for all s1 · · · sk ∈ S⩽n

s . A
bounded M-policy is an n-step M-policy for some n.

We drop the M when the MDP is clear from the context.
We will also often identify the bounded policy ⟨s, π⟩ with the
function π. Whenever we wish to make the initial state explicit,
by slight abuse of notation, we write πs instead of the function
π.

For an n-step policy πs, we define Paths(πs) as the set

{s1a1 · · · snansn+1 | s1 = s & ∀i.πs(s1s2 · · · si) = ai}.

Given an n-step policy πs, its path distribution is the probabil-
ity distribution µM,s

π over Paths(πs) defined as

µM,s
π (s1a1 · · · snansn+1) =

n∏
i=1

P (si, ai)(si+1).

This extends to sets of paths in the standard way, i.e.
µM,s
π (X) =

∑
s∈X µ

M,s
π (s). Whenever it is clear from the

context, we drop the M from the superscript.

Our policies are defined with respect to finite state histories.
For practical purposes, it can be useful to consider policies
that consider state-action histories as well, so that the agent
can base the choice of the next action depending on which
action it executed in the past. Although we do not expand
upon this for simplicity of presentation, we note that all of our
work extends to such policies as well.

Example 3 (Running example, continued). Suppose Mary re-
alizes that she has enough time and funds to stay in university
for an extra year, and therefore wants to take it easy this year,
only starting to seriously study next year. If she manages to
graduate this year, she will try to get into a Ph.D. (surprised
by the ease of obtaining a degree).

This can be seen as Mary adopting the 2-step policy π from
sstudent, defined as
• π(sstudent) = takeEasy,
• π(sstudentsstudent) = study, and
• π(sstudentspass) = applyPhD.

Note that we need not consider other state sequences than the
ones specified, as it is impossible to actually encounter those
with this policy.

The path distribution on Paths(πsstudent) can then be verified
to take the following values in its support:
• µsstudentπ (sstudent takeEasy sstudent study sstudent)
= Psstudent,takeEasy(sstudent) · Psstudent,study(sstudent)
= 0.7 · 0.2 = 0.14,

• µsstudentπ (sstudent takeEasy sstudent study spass)
= Psstudent,takeEasy(sstudent) · Psstudent,study(spass)
= 0.7 · 0.8 = 0.56,

• µsstudentπ (sstudent takeEasy spass applyPhD spass)
= Psstudent,takeEasy(spass) · Pspass,applyPhD(spass)
= 0.3 · 0.1 = 0.03, and

• µsstudentπ (sstudent takeEasy spass applyPhD sPhD)
m = Psstudent,takeEasy(spass) · Pspass,applyPhD(sPhD)
= 0.3 · 0.9 = 0.27.

Using this path distribution, we can now determine the prob-
ability that Mary is not in a Ph.D. in two timesteps when
applying π by summing up the probabilities of paths ending in
a state other than sPhD, resulting in a probability of 0.73.

Definition 3 (Syntax). The language of PLBP is inductively
defined by the grammar

φ ::= ⊥ | x | φ ∧ φ | ¬φ | ♢n▷◁rΦn,
Φ0 ::= φ,

Φk+1 ::= φ | doa | Φk+1 ∧ Φk+1 | ¬Φk+1 | XΦk,

where x ∈ Prop, a ∈ A , n ⩾ 1, r ∈ Q ∩ [0, 1], and ▷◁ ∈ {<
,=, >}. Formulas φ are referred to as state formulas (or just
PLBP formulas), and formulas Φn are referred to as n-step
path formulas (or more generally, path formulas).

In the definition of state formulas, ⊥ stands for falsity. The
modal formula ♢n▷◁rΦ involves existential quantification over
policies and states that “the agent can act in the next n steps
in such a way that Φ will hold with probability ▷◁ r.”

Boolean connectives ∨, → are defined as abbreviations in a
standard way. We also define the following abbreviations:
• ♢n⩾rΦ := ♢n>rΦ ∨ ♢n=rΦ

• ♢n⩽rΦ := ♢n<rΦ ∨ ♢n=rΦ
We can also define a modal operator □n▷◁rΦ that replaces the
existential quantification with universal quantification, through
the following abbreviations:
• □n<rΦ := ¬♢n>rΦ ∧ ¬♢n=rΦ
• □n⩽rΦ := ¬♢n>rΦ
• □n=rΦ := ¬♢n<rΦ ∧ ¬♢n>rΦ
• □n⩾rΦ := ¬♢n<rΦ
• □n>rΦ := ¬♢n<rΦ ∧ ¬♢n=rΦ

Path formulas are built from state formulas together with
doa-propositions, combined using the X-operator and Boolean
connectives. The doa-proposition, where a ∈ A , should be
read as “the agent will now execute a”, i.e. the next action on
the path is a. The operator X stands for the next-time operator,
with Xφ being true on a path meaning that φ is true on the
next state in the path.

Note that in the way we set up our syntax, Φn-formulas
have at most n nested X-operators. Therefore, in the state
formula ♢n▷◁rΦ, the path formula Φ is not allowed to have a
nesting depth of X-operators greater than n. Intuitively, this
is because the policies quantified over in ♢n▷◁rΦ only look n
steps ahead.2

If the limitation on the length of paths and nesting depth
is dropped, problems arise in the semantics: we somehow

2The definition of path formulas could have been stated in a
standard way, as

φ | doa | Φ ∧ Φ | ¬Φ | XΦ,

but then in the definition of state formulas, we would need a side
condition that in ♢n

▷◁rΦ, the path formula Φ has at most n nested
X-operators.

need to evaluate XΦ in a state that does not exist on the path.
In LTL on finite traces [De Giacomo and Vardi, 2015], all
formulas XΦ are false in the last state of a path, even if Φ is a
tautology. So, paradoxically, the probability of a set of 1-step
paths where a tautology holds after two steps would have to
be 0 if we adopt a similar approach.

Note that although the temporal part of the logic only con-
tains X, we can define abbreviations for bounded versions of
other standard temporal operators like U (something holds
until something else does) and G (something always holds).

E.g. GnΦ, meaning Φ always holds in the next n steps,
can be considered as an abbreviation of Φ ∧ XΦ ∧ · · · ∧ XnΦ,
where Xn is X repeated n times.

Example 4 (Running example, continued). Below are some
examples of formulas of PLBP for the example of Mary:
• inPhD is a state formula and therefore also an n-step path

formula for any n,
• XinPhD is an n-step path formula for n ⩾ 1, meaning that

Mary is in a Ph.D. position at the next timestep,
• ♢2

=0.96XXinPhD is a state formula, meaning that Mary
can act now and in the next timestep in such a way that
afterwards she will be in a Ph.D. position with probability
0.96, and

• ♢2
>0.4XXXinPhD is not a syntactically correct formula

because XXXinPhD has three nested X-operators, which
cannot occur in the scope of a ♢2 modality. Intuitively, it
is not meaningful to say that Mary can act now and in the
next timestep in such a way that in three steps she will be in
a Ph.D. position with a probability greater than 0.4 since
this would depend on what action Mary would take in two
steps.

Definition 4 (Semantics). Given an MDP M, the semantics
of PLBP is defined via simultaneous induction over state and
path formulas: for state formulas, it is defined with respect to
states as
• M, s |= ⊥ never,
• M, s |= x iff x ∈ V (s),
• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ,
• M, s |= ¬φ iff M, s |̸= φ, and
• M, s |= ♢n▷◁rΦ iff there exists an n-step policy πs such

that µsπ({s ∈ Paths(πs) | M, s |= Φ}) ▷◁ r,
while for n-step path formulas, it is defined with respect
to length n paths, i.e. nonempty finite sequences s =
s1a1 · · · snansn+1 of states and actions, as
• M, s |= φ iff M, s1 |= φ,
• M, s |= doa iff a1 = a,
• M, s |= Φ ∧Ψ iff M, s |= Φ and M, s |= Ψ,
• M, s |= ¬Φ iff M, s |̸= Φ, and
• M, s |= XΦ iff M, sX |= Φ where sX = s2a2 · · · sn.

Whenever it is clear from the context, we drop the M and just
write s |= φ and s |= Φ.

Example 5 (Running example, continued). Revisiting the
MDP we specified for Mary’s situation, we see that the follow-
ing formulas are satisfied.
• sstudent |= ♢2

>0.5XXinIndustry: Mary can act now and in
the next step in such a way that with probability greater
than 0.5, she will be in industry in two steps. Namely, with

the policy saying to study now, and then (no matter the
outcome) apply to industry afterwards.

• sstudent |= prestudy ∧ □1
⩾0.6(dostudy → Xpass): Mary can

execute study, and doing so will cause pass to hold after-
wards with a probability at least 0.6.

• sstudent |= ♢1
=1X□

1
=1X¬inPhD: Mary can act now in such

a way that it becomes guaranteed that no matter how she
acts afterwards, she will not be in a Ph.D. position. Namely,
by choosing to apply to industry now.

Since we have explicit postconditions in the logic, we can even
formulate properties of specific policies Mary can choose. For
example, consider the 2-step policy that says to take it easy
now, apply to industry afterwards if she passes, and otherwise
study. We can state in our logic that under this policy, Mary
will be in industry in two steps with a probability less than 0.2.
This can be done by way of the formula

♢2
<0.1(dotakeEasy ∧ (XposttakeEasy,1 → XdoapplyIndustry)

∧ (XposttakeEasy,2 → Xdostudy) ∧ XXinIndustry),

remembering that posttakeEasy,1 = pass and posttakeEasy,2 =
¬pass. And indeed, this formula holds at sstudent. Generaliz-
ing beyond the example of Mary, we can similarly state that
policies in other MDPs satisfy properties with some probabil-
ity, e.g. safety and liveness properties.
Example 6 (Coherence of intentions). Let us now revisit the
theory of intention. Given a finite set I of ”commitment to-
wards time” intentions (which we take to be pairs ⟨a, t⟩ of
actions a and time steps t, meaning that the agent intends to
perform a at t), it is important to be able to determine whether
adopting these intentions is coherent, in the sense laid out
by [Shoham, 2009; van Zee et al., 2020]. In particular, this
means that intentions need to be internally consistent (e.g. at
most one action can be executed at a time, and subsequent
actions need to have compatible pre- and postconditions). Fur-
thermore, with respect to the agent’s beliefs, coherence means
that for all of the agent’s intentions, the agent does not believe
that the preconditions of the intended action do not hold at
the intended time, and the agent does believe that the intended
actions’ postconditions hold.

Representing the agent’s beliefs as a set Γ of formulas, we
can formulate a notion of coherence of I with respect to Γ
satisfying the above criteria. Consider the formula

execθ(I) = ♢tmax

⩾θ

∧
⟨a,t⟩∈I

Xtdoa,

where tmax = max⟨a,t⟩∈I t. This formula encodes the agent’s
belief (with strength θ ∈ [0, 1]) that it is possible to execute all
of their intentions. Using this, we can say that I is coherent
with respect to Γ iff Γ and execθ(I) is satisfiable. And indeed,
this notion of coherence requires that intentions are internally
consistent, as well as that the agent does not believe (too
strongly) that the preconditions of the intended actions do not
hold at the intended time, and after adding execθ(I) to the
agent’s beliefs, the agent must also believe that the intended
actions’ postconditions hold (with a certain probability).

This example shows why it is important that we use a logic in
which we can explicitly reason about the execution of actions,
as well as their pre- and postconditions. And furthermore,

the example shows how restricting to bounded policies and
finite paths still allows us to express what we wish, while
simultaneously allowing for good computational properties,
which we will see in the following sections.

3 Model Checking
In this section, we state the model checking problem for PLBP,
show that it is decidable, and analyze its complexity. Note that
we restrict our attention to state formulas, as this suffices for
our intended applications. The model checking problem for
PLBP can be formulated as follows:

Instance An MDP M over A with associated prea and Posta
for all a ∈ A , a state s in M, and a PLBP formula φ,
where the numbers are written in unary.3

Question Does it hold that M, s |= φ?

Theorem 1. The model checking problem for PLBP is decid-
able.

Proof. We give an algorithm for solving the model check-
ing problem. Consider the set of all state subformulas of
φ, Subf(φ) (including those occurring inside its path sub-
formulas). Order Subf(φ) in the order of increasing com-
plexity, starting with propositions. Then label the states
in M with formulas in Subf(φ) that they satisfy, in order.
The cases of propositions and Boolean connectives are triv-
ial. Let us consider the case of ♢n▷◁rΦ. In order to deter-
mine whether to label some state s with ♢n▷◁rΦ, we need to
check whether there is some policy πs such that property
µsπ({s ∈ Paths(πs) | s |= Φ}) ▷◁ r. A straightforward
approach is to iterate over all possible n-step policies πs .
There are O(|A ||Sn|) of those, and each policy is of size
O(|A | × |Sn|). We can generate them one by one and repre-
sent them using space polynomial in the MDP and exponential
in the formula. For each policy πs, generate Paths(πs). That
set is of size O((|S| × |A |)n). Given that states on each path
are already labeled with the state subformulas of Φ, it is easy
(i.e. linear time) to evaluate Φ on all of them. If for a given
policy π it holds that µsπ({s ∈ Paths(πs) | s |= Φ}) ▷◁ r,
then label s with ♢n▷◁rΦ. Otherwise, if no policy satisfies this,
s does not satisfy ♢n▷◁rΦ.

The algorithm above gives a decision procedure in EX-
PSPACE. It has the advantage that it can return a policy sat-
isfying ♢n▷◁rΦ if it exists (and since policy size is exponential
in the formula, we cannot do better). However, if a witness
policy is not required, it is possible to do better.

Below we give a nondeterministic algorithm which, given a
structureM = (S, P, V) over A and a formula φ0, returns the
set of states [φ0]M satisfying φ0: [φ0]M = {s |M, s |= φ0}
(see Algorithm 1). This algorithm uses only polynomial space.

Given φ0, we produce a set of subformulas Subf (φ0) of
φ0 in the usual way. We then proceed by cases. For all
formulas in Subf (φ0) apart from ♢n▷◁rΦ the cases are standard.
Labeling states with ♢n▷◁rΦ makes use of a function MEASURE

3If n is written in binary, then e.g. a linear pass over a sequence
of n states takes time exponential in the size of the formula, which
we find counterintuitive.

Algorithm 1 Labelling φ0

function PLBP-LABEL(M,φ0)
for φ′ ∈ Subf (φ0) do

case φ′ = p
[φ′]M ← V (p)

case φ′ = ¬φ
[φ′]M ← S \ [φ]M

case φ′ = φ ∧ ψ
[φ′]M ← [φ]M ∩ [ψ]M

case φ′ = ♢n
▷◁rΦ

[φ′]M ← { s | MEASURE(node0(s),Φ, n, 0) ▷◁ r}
return [φ0]M

Algorithm 2 Computing the measure of paths
function MEASURE(q,Φ, n, PΦ)

if d(q) > n then
if p(q) |= Φ then PΦ ← PΦ + µ(p(q))
return PΦ

else
guess a ∈ actions(s(q))
for o ∈ outcomes(s(q), a) do

PΦ ← MEASURE(node(q, a, o),Φ, n, PΦ)

return P ′
Φ

which returns the measure of paths generated by a policy (see
Algorithm 2).

The function MEASURE takes four arguments: the current
node q, the formula Φ, the depth of the policy n, and the
measure of the paths generated by the policy so far which
satisfy Φ. The algorithm proceeds by recursive depth-first
search. Each branch in the search tree is represented by a
sequence of nodes. A node is a structure that consists of a
state of M and a finite path of nodes leading to this node
from the root node. For each node q, we have a function s(q)
which returns its state, a(q) which returns the action taken
to reach s(q), p(q) which returns the nodes on the path to
q and d(q) which returns the length of the path to q. The
function node0(s) returns the root node, i.e., a node q0 such
that s(q0) = s a(q) = nil, p(q0) = [] and d(q0) = 0. The
function node(q, a, s′) returns a node q′ where s(q′) = s′,
a(q′) = a, p(q′) = [p(q) · q′] and d(q′) = d(q) + 1.

The base case is when the length of the branch, d(q) is
greater than n. If Φ is true on the path represented by this
branch, we update PΦ, the measure of the paths generated so
far, by adding the probability of the current path to it, before
returning; otherwise, we return the value of PΦ passed as an ar-
gument. The recursive case is when the length of the branch is
less than or equal to n. We extend the policy by guessing an ac-
tion possible in s(q) (this is the only non-deterministic step in
the algorithm). For each possible outcome state o of executing
action a in state s(q), we call MEASURE to update PΦ with the
measure of paths through state o. When all the outcome states
of a have been considered, we return PΦ as the measure of the
paths with prefix p(n) where action a is chosen in s(n). Note
that execution of MEASURE requires only polynomial space.
The recursion is bounded by n, and for each recursive call, we
need to remember only the remaining outcomes of the chosen

action yet to be considered, which is bounded by |S|. Keeping
track of the measure of the paths generated by the policy so
far which satisfy Φ requires constant space. MEASURE is a
nondeterministic algorithm, so the complete model checking
algorithm runs in nondeterministic polynomial space. Since
NPSPACE = PSPACE by Savitch’s theorem [Savitch, 1970],
there is a PSPACE algorithm for solving the model checking
problem for PLBP. This gives us inclusion in PSPACE. Below
we also prove PSPACE-hardness.

Theorem 2. The model checking problem for PLBP is
PSPACE-complete.

Proof. The hardness proof is by reduction of the QSAT (Satis-
fiability of Quantified Boolean Formulas) problem (which is a
PSPACE-complete problem) to the model checking problem
for PLBP. We use a reduction from QSAT inspired by [Bulling
and Jamroga, 2010]. However, instead of the strategic setting
of [Bulling and Jamroga, 2010], where a verifier has a strategy
to evaluate the formula to true (enforce the ‘yes’ state) if and
only if the formula is satisfiable, we work in the probabilistic
setting, where an agent has a policy to reach the ‘yes’ state
with probability 1 if and only if the QBF formula is satisfiable.

The details of the proof are given in the supplementary
material.

4 Satisfiabilty
The satisfiability problem for PLBP is as follows:

Instance A PLBP formula φ over A with associated prea
and Posta for all a ∈ A . We assume that the numbers
are written in unary.

Question Is there an MDP M over A , prea, and Posta, such
that there exists a state s in M with M, s |= φ?

We will now begin proving that the satisfiability problem is
also decidable.

Denote by pd(φ) the policy depth of a formula φ, defined as
pd(φ) = 1 if φ is atomic, pd(φ∧ ψ) = max{pd(φ), pd(ψ)},
pd(¬φ) = pd(φ), and pd(♢n▷◁rΦ) = n + max{pd(φ) |
φ appears in Φ}. We then have the following.

Theorem 3 (Small model property). If a formula φ is satis-
fiable, then it is also satisfiable in an MDP with at most as
many states as a tree with depth pd(φ) and branching factor∑
a∈A |Posta|.

Proof sketch. As the proof is a conceptually clear but techni-
cally involved extension of the method of unraveling, well-
known in modal logic, we give details only in the supplemen-
tary material. The intuition is that we can unfold the MDP
into a tree-shaped structure, branching for every executable
action and possible outcome (i.e. each executable a ∈ A and
posta,i ∈ Posta). This tree satisfies exactly the same formulas
as the original MDP. Evaluating φ only requires us to search
through the tree up to depth pd(φ).

Theorem 4 (Satisfiability). The satisfiability problem for
PLBP is decidable in 2EXPSPACE.

Proof sketch. We first describe a decision procedure and com-
ment on its complexity afterwards. Using the bound y
on the state count from Theorem 3, we iterate over sets
S = {s1, . . . , sl} of size at most y, and over valuations V
on S considering only the variables appearing in φ (plus all
pre- and postconditions). We require that for all s ∈ S there is
some a such that s |= prea. We now show that we can define
some P such that ⟨S, P, V ⟩, s1 |= φ, iff some first-order logic
(FOL) sentence αφ holds in the theory of real closed fields
(RCF). We refer to [Chang and Keisler, 2012] for those unfa-
miliar with RCF. Using the well-known decidability of RCF,
we then get a decision procedure.

We will encode P through variables ps,t,a for s, t ∈ S and
a ∈ A , denoting Ps,a(t) (if that is defined). Writing p for
the sequence of all these variables, we consider a first-order
formula β(p) that is true in RCF iff the P encoded by p is
well-defined (following the conditions of Definition 1).

Next, we consider for every 1 ⩽ n ⩽ pd(φ), state s, n-step
policy πs, X ⊆ Paths(πs), ▷◁ and r ∈ Q ∩ [0, 1], a FOL
formula γs,X,π,▷◁,r(p) such that if β(p) holds in RCF, then
γs,X,π,▷◁,r(p) holds iff µsπ(X) ▷◁ r in the MDP encoded by p.
Note that µsπ(X) ▷◁ r is an inequality with a sum of products,
expressible in RCF.

We now simultaneously define FOL formulas δψ,s, κΦ,h,
and λΦ,s,n,π,X , respectively expressing “s |= ψ”, “h |= Φ”,
and “X is the set of all h ∈ Paths(πs) such that h |= Φ”.

The definitions of these are simple, and almost di-
rectly follow the semantics of our logic, with e.g. (i)
δ♢n

▷◁rΦ,s
=

∨
n-step πs

∨
X⊆Paths(πs) λΦ,s,n,π,X → γs,X,π,▷◁,r,

(ii) κXΦ,h = κΦ,hX
, and (iii) λΦ,i,n,π,X =

∧
h∈X κΦ,h ∧∧

h∈Paths(πs)\X ¬κΦ,h.
Finally, we put αφ = ∃p

(
β(p) ∧ δφ,s1(p)

)
, finishing our

description of the decision procedure.
Iterating over S and V proceeds for a double exponential

number of iterations w.r.t. the input, by the bound given in
Theorem 3. The FOL formula we construct in each iteration
is also of double exponential size, as the δ♢n

▷◁rΦ,s
formula con-

tains a disjunct for every policy and set of paths. Noting that
αφ is an existential formula, it follows from existential RCF
being in PSPACE [Canny, 1988] that the overall procedure
runs using double exponential space.

5 Related Work
There are many logics designed to reason about time and
probability. Most of these consider infinite traces/histories, in
contrast to PLBP. Though we will state for each logic how the
expressive power of that logic differs from that of PLBP, we
also refer the interested reader to [Artale et al., 2019] for a
more general comparison of finite- and infinite-trace logics.

The logics PCTL [Hansson and Jonsson, 1989; Hansson
and Jonsson, 1994] and pCTL∗ [Aziz et al., 1995] extend the
branching-time temporal logics CTL and CTL∗, respectively,
with operators P▷◁r such that P▷◁rφ is true at a state iff infinite
paths starting from that state satisfy φ with probability ▷◁ r.
The logics have decidable model checking, polynomial-time
for PCTL and polynomial-space for pCTL∗, but the matter
of whether satisfiability is decidable has been a long-standing
open problem, as is the case for all the other logics we mention

here. Formulas of PCTL and pCTL∗ are interpreted over
discrete-time Markov chains, which are our MDPs without
actions. PLBP is not a fragment or a restriction of pCTL∗ to
finite traces. One obvious reason for this is the presence of
actions; formulas with do expressions in Example 5 cannot be
expressed in pCTL∗.

Closer in spirit are extensions introduced in [Bianco and de
Alfaro, 1995]. Their models are Markov chains, in which at
each state a next-state probability distribution is nondetermin-
istically selected, according to which the structure transitions
to a next state. This is in effect working with a less structured
notion of actions (without pre- and postconditions), in which
the nondeterministic choice corresponds to a choice of action.
The logic has operators P⩾r and P⩽r, which respectively con-
sider minimal and maximal probabilities of paths with respect
to the nondeterministic choices. Considering the mentioned
correspondence between nondeterminism and actions, these
operators are effectively doing existential and universal quan-
tification (respectively) over policies, similar to the ♢ and □
modalities of PLBP. The PCTL extension still has polynomial-
time model checking, but the pCTL∗ extension now has a
lower bound of 2EXPTIME. Though these extensions have
some notion of action hiding behind the scenes as we pointed
out, they cannot express everything we need for our appli-
cations (which we can express with PLBP). Specifically, we
cannot reason in these extensions about the executability and
consequences of certain actions, which is required to deter-
mine the coherence of an agent’s intentions (as discussed in
Example 6). Besides that, these extensions are quite limited in
what kind of inequalities they support: for example, we cannot
reason about the existence of a policy for which Φ holds with
a probability less than 0.2.

The logics PATL and PATL∗, introduced by [Chen and
Lu, 2007], are extensions of PCTL and pCTL∗ respectively,
in which there is a set of multiple agents, and in which ac-
tions are explicitly part of the semantics (but not the language).
These logics are interpreted over probabilistic concurrent game
structures, which are generalizations of MDPs in which the
probability of transitioning from one state to another is deter-
mined by which actions all of the agents choose. The main
modality of these logics is ⟨⟨B⟩⟩▷◁r, where B is a subset of
agents, with the interpretation that ⟨⟨B⟩⟩▷◁rΦ iff the agents in
B have a (memoryful) strategy/policy together that enforces
that the path formula Φ holds with probability ▷◁ r. Model
checking PATL is in PNP∩coNP, and [Chen and Lu, 2007] state
that pATL∗ also has decidable model checking, and though
we did not manage to find the proof of this statement and
(the complexity of) the corresponding algorithm, it must have
a lower bound of 2EXPTIME since model checking for the
pCTL∗ extension of [Bianco and de Alfaro, 1995] reduces to
it. Again, PLBP is not a fragment or a restriction of these
formalisms.

Probabilistic Strategy Logic (PSL) [Aminof et al., 2019] has
first-order quantification over memoryful strategies/policies,
allowing one to express statements like ‘there exists a policy
such that p will hold with probability at least 0.2 and q will
hold with probability precisely 0.9’, which is not possible in
PATL∗ (or any of the other logics mentioned here, including
PLBP). We note that PSL does not allow us to reason about

the execution of specific actions. This increase in expressive
power comes with a high price: model checking is already un-
decidable for a highly restricted fragment of PSL, even when
considering deterministic finite-memory strategies and a sin-
gle agent. Limiting to memoryless strategies gives decidable
model-checking with an upper bound of 3EXPSPACE. So
even if we were to add reasoning about explicit pre- and post-
conditions into PSL, the resulting logic would not be practical
for our purposes from a computational perspective, having too
high complexity model checking and unknown decidability of
satisfiability. And we truly need memoryful (bounded) poli-
cies for statements like “the agent can act in the next n steps in
such a way that . . . ” which we use for checking the coherence
of intentions.

6 Future Work
As explained in Section 1, the intended application of PLBP
is to build a theory of intention revision under uncertainty,
following [Shoham, 2009] in considering intentions as com-
mitments towards time. In particular, we aim to follow [van
Zee et al., 2020] in putting intention revision on top of the well-
known AGM-style belief revision [Alchourrón et al., 1985].
The computational properties of PLBP are important for this
goal; especially decidable satisfiability, as it allows us to com-
pute whether beliefs and intentions after an update are still
consistent. And as discussed in Example 6, we can define
coherence as satisfiability in the logic. Furthermore, the logic
working with finite/bounded traces and policies also facilitates
AGM-style revision in the absence of compactness, following
[van Zee et al., 2020].

Besides intention revision, we plan to consider reasoning
about policies in reinforcement learning. For this application,
we will consider extensions of PLBP with reward signals and
imperfect information. Natural starting points are [Jamroga,
2008], who introduces a quantitative logic for MDPs that rea-
sons about rewards, and [Huang et al., 2012], who introduce
an extension of PATL∗ with imperfect information.

We will also investigate the expressive power of the logic,
by following common practice in modal logic and defining an
appropriate notion of bisimulation for MDPs that satisfies a
Hennessy-Milner theorem with respect to PLBP. A sound and
complete axiomatization of PLBP is of interest since it would
allow us to formalize how pre- and postconditions behave in
PLBP and verify whether principles of coherence like those
listed by [Shoham, 2009] hold in the logic.

7 Conclusion
We have introduced PLBP, a novel probabilistic temporal logic
for reasoning about the interactions between actions, time, and
probability. It can describe time-bounded policies in MDPs,
the probability that some property can be achieved by such a
policy, and can also reason about specific properties of actions
and policies. We have analyzed the typical reasoning problems
for PLBP, namely model checking and satisfiability, and have
shown that both are decidable. We plan to use PLBP in the
future for formalizing intention revision under uncertainty and
to apply it to settings like Reinforcement Learning.

References
[Alchourrón et al., 1985] Carlos E. Alchourrón, Peter

Gärdenfors, and David Makinson. On the logic of theory
change: Partial meet contraction and revision functions.
The Journal of Symbolic Logic, 50(2):510–530, 1985.

[Aminof et al., 2019] Benjamin Aminof, Marta
Kwiatkowska, Bastien Maubert, Aniello Murano,
and Sasha Rubin. Probabilistic strategy logic. In Sarit
Kraus, editor, Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI-19), pages
32–38, 2019.

[Artale et al., 2019] Alessandro Artale, Andrea Mazzullo,
and Ana Ozaki. Do you need infinite time? In Proceedings
of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pages 1516–1522. Interna-
tional Joint Conferences on Artificial Intelligence Organi-
zation, 7 2019.

[Aziz et al., 1995] Adnan Aziz, Vigyan Singhal, Felice
Balarin, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. It usually works: The temporal logic of stochas-
tic systems. In Pierre Wolper, editor, Computer Aided Veri-
fication, pages 155–165, Berlin, Heidelberg, 1995. Springer
Berlin Heidelberg.

[Bianco and de Alfaro, 1995] Andrea Bianco and Luca de Al-
faro. Model checking of probabilistic and nondeterministic
systems. In P. S. Thiagarajan, editor, Foundations of Soft-
ware Technology and Theoretical Computer Science, pages
499–513, Berlin, Heidelberg, 1995. Springer Berlin Heidel-
berg.

[Bulling and Jamroga, 2010] Nils Bulling and Wojciech Jam-
roga. Verifying agents with memory is harder than it
seemed. AI Commun., 23(4):389–403, 2010.

[Canny, 1988] John Canny. Some algebraic and geometric
computations in PSPACE. In Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing
STOC’88, page 460–467. ACM, 1988.

[Chang and Keisler, 2012] C. C. Chang and H. Jerome
Keisler. Model Theory. Dover Publications, 3 edition,
2012.

[Chen and Lu, 2007] Taolue Chen and Jian Lu. Probabilistic
alternating-time temporal logic and model checking algo-
rithm. In Fourth International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD 2007), volume 2, pages
35–39, 2007.

[Cohen and Levesque, 1990] PR Cohen and HJ Levesque. In-
tention is choice with commitment. Artificial intelligence,
1990.

[De Giacomo and Vardi, 2015] Giuseppe De Giacomo and
Moshe Y. Vardi. Synthesis for LTL and LDL on finite
traces. In Qiang Yang and Michael J. Wooldridge, edi-
tors, Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, pages
1558–1564. AAAI Press, 2015.

[Hansson and Jonsson, 1989] Hans Hansson and Bengt Jon-
sson. A framework for reasoning about time and reliabil-
ity. In [1989] Proceedings. Real-Time Systems Symposium,
pages 102–111, 1989.

[Hansson and Jonsson, 1994] Hans Hansson and Bengt Jons-
son. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

[Huang et al., 2012] Xiaowei Huang, Kaile Su, and Chenyi
Zhang. Probabilistic alternating-time temporal logic of
incomplete information and synchronous perfect recall. In
Jörg Hoffmann and Bart Selman, editors, Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence.
AAAI Press, 2012.

[Icard et al., 2010] Thomas Icard, Eric Pacuit, and Yoav
Shoham. Joint revision of belief and intention. In Proceed-
ings of the Twelfth International Conference on Principles
of Knowledge Representation and Reasoning, KR’10, page
572–574. AAAI Press, 2010.

[Jamroga, 2008] Wojciech Jamroga. A temporal logic for
markov chains. In Lin Padgham, David C. Parkes, Jörg P.
Müller, and Simon Parsons, editors, 7th International Joint
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Volume 2, pages 697–704. IFAAMAS,
2008.

[Puterman, 1994] Martin L. Puterman. Markov Decision Pro-
cesses: Discrete Stochastic Dynamic Programming. Wiley
Series in Probability and Statistics. Wiley, 1994.

[Rao and Georgeff, 1991] Anand S. Rao and Michael P.
Georgeff. Modeling rational agents within a BDI-
architecture. In James F. Allen, Richard Fikes, and Erik
Sandewall, editors, Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and
Reasoning (KR’91), pages 473–484. Morgan Kaufmann,
1991.

[Savitch, 1970] Walter J. Savitch. Relationships between non-
deterministic and deterministic tape complexities. Journal
of Computer and System Sciences, 4(2):177–192, 1970.

[Shoham, 2009] Yoav Shoham. Logical theories of intention
and the database perspective. Journal of Philosophical
Logic, 38(6):633–647, 2009.

[van der Hoek et al., 2007] Wiebe van der Hoek, Wojciech
Jamroga, and Michael Wooldridge. Towards a theory of
intention revision. Synthese, 155(2):265–290, 2007.

[van Ditmarsch et al., 2011] Hans van Ditmarsch, Tiago
de Lima, and Emiliano Lorini. Intention change via local as-
signments. In Mehdi Dastani, Amal El Fallah Seghrouchni,
Jomi Hübner, and João Leite, editors, Languages, Method-
ologies, and Development Tools for Multi-Agent Systems,
pages 136–151, Berlin, Heidelberg, 2011. Springer.

[van Zee et al., 2020] Marc van Zee, Dragan Doder, Leendert
van der Torre, Mehdi Dastani, Thomas Icard, and Eric
Pacuit. Intention as commitment toward time. Artificial
Intelligence, 283, 2020.

	Introduction
	Syntax and Semantics of PLBP
	Model Checking
	Satisfiabilty
	Related Work
	Future Work
	Conclusion

