Rational Revision of Group Intentions

Nima Motamed', Natasha Alechina®!, Mehdi Dastani', Dragan Doder'

'Utrecht University, The Netherlands,
20pen University, The Netherlands
{n.motamed, n.a.alechina, m.m.dastani, d.doder} @uu.nl

Abstract

In systems such as group calendars or collaborative plat-
forms, agents make group commitments to future actions that
must adapt as new facts or constraints emerge. We develop
a formal framework for revising such group intentions in
systems where coalitions adopt shared, temporally extended
intentions represented in a logic based on Alternating-Time
Temporal Logic with strategy contexts. After formulating co-
herence criteria for systems of group intentions, we establish
representation theorems in the style of Katsuno and Mendel-
zon, showing that revision operators satisfy rationality pos-
tulates precisely when they can be represented by preorders
on strategy profiles. These results extend classical revision
theory by covering non-total preorders and a logic of higher
expressive power. Altogether, the framework lays the ground-
work for principled revision of group intentions in systems
where both coordination and change are essential.

1 Introduction

Intentions, as commitments to future courses of action, lie
at the heart of planning and coordination in autonomous
systems. When an agent acquires new information, changes
their priorities, or reasons further about their abilities, their
existing intentions may need to be revised. Having a clear
account of how those revisions should proceed is essential
for designing agents whose behaviour remains coherent and
predictable rather than ad-hoc or brittle.

In the single-agent setting, Shoham (2009) conceptualises
this problem by treating intentions as entries in a personal
database of commitments. From that perspective, revising
intentions is a matter of inserting, deleting, or rearrang-
ing database entries while preserving overall consistency.
A line of work has developed frameworks for revision of
such single-agent intention databases in both deterministic
and stochastic settings (Icard, Pacuit, and Shoham 2010;
Van Zee et al. 2020; Motamed et al. 2024), adapting tech-
niques from classical belief revision theory and providing
postulates for rational revision.

When several agents collaborate, intentions no longer
concern isolated courses of action but shared commitments
that bind whole groups. A logistics network, for instance,

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

succeeds only if warehouses, vehicles, and routing algo-
rithms collectively intend a feasible delivery schedule; a
swarm of exploration drones must agree not merely on in-
dividual waypoints but on a combined trajectory that satis-
fies energy and safety constraints for the group as a whole.
In such multiagent settings, changes to one group’s inten-
tions can ripple through to other groups. Accordingly, the
important task is not merely the revision of one group’s iso-
lated intention, but rather the revision of an interconnected
system of intentions for different groups of agents, in a way
that leaves the resulting system still feasibly executable and
consistent with environmental constraints.

There is existing work on re-planning, revising, schedul-
ing, and recognising intentions in a multiagent setting, e.g.
(Cawsey et al. 1993; Dunin-Keplicz and Verbrugge 2002;
Zhang, Nguyen, and Kowalczyk 2007; Dann et al. 2023;
Zhang et al. 2023). But a principled framework that de-
scribes how intention revision methods should operate, in
particular with interconnected systems of group intentions,
is still lacking. In this paper we close the gap by introduc-
ing such a framework that (i) represents the intentions of
groups of agents in a logic based on Alternating-Time Tem-
poral Logic with strategy contexts (Brihaye et al. 2009), (ii)
defines two coherence notions that capture when a system
of intentions is jointly consistent and adheres to constraints,
and (iii) specifies rational revision operators, axiomatised by
postulates and characterised by a representation theorem in
the style of Katsuno and Mendelzon (1991). This theorem is
of particular interest, as it provides a semantic grounding for
intention revision in terms of minimal change via preorders
on strategy profiles, and uses an innovative proof method,
adding to the literature on revision theory.

2 Logical Preliminaries

Before we define our notion of group intention, we need to
first introduce the logic in which we formulate and interpret
them. We choose a fragment of alternating-time temporal
logic with strategy contexts (Brihaye et al. 2009) only us-
ing the next-time operator X as temporal operator, and en-
riched with primitive formulas expressing the execution of
actions. We refer to this logic as XAT L do. Similar exten-
sions of temporal logics with explicit actions were also pur-
sued in other work (Herzig, Lorini, and Walther 2013; Mo-
tamed et al. 2023). The chosen logic possesses precisely the



expressive power needed to express and reason about group
intentions.

We fix a finite set Ag of agents, a finite set Act of actions,
and a finite set Prop of propositional variables. We refer to
a=(a')ieng € Act”® as joint actions, containing an action
o' € Act for each agent ¢ € Ag. Moreover, we use the
following bits of notation. Given A C Ag, we write A =
Ag\ A. And given a partial function f: X = Y andz € X,
we write f(x)] to denote that f(x) is defined. We denote by
dom(f) the set of all z € X for which f(x)].

Definition 2.1 (Concurrent game structure). A concurrent
game structure (CGS) is a tuple G = (S, M, T, L), where
S is a finite set of states, M: S x Ag — 2A%\ {0} is
the availability function specifying which actions are avail-
able to which agent at which state, T': S x Acth® —~ §
is a partial transition function, and L: S — 2Prop g a la-
belling by propositional atoms. We require that T'(s, «)]. iff
o' € M(s,i) foralli € Ag.

As is standard with the semantics of ATL, transitions are
only defined for joint actions that are available. This is im-
portant for our applications: reasoning about the executabil-
ity of intentions is an essential part of their revision.

A path from state s is an infinite sequence n =
soa1sy--- € (S; Act )« of states and joint actions, such
that sg = s, T(Sn, ant+1)d and T(Sp, apt1) = Sp41 for
all n < w. A history from s is defined analogously as a fi-
nite sequence 1 € S; (Act”€; §)* of states and joint actions,
ending in a state, such that again sg = s, T(sp, @nt1)d
and T'(sp, py1) = Sp1 for all n. We write Path(s) and
Hist(s) for sets of paths and histories from s, respectively.

In a CGS, agents can adopt strategies that independently
and concurrently pick actions to perform at each state, given
the history of states and joint actions.We refer to a collection
of such strategies for a subset of agents as a strategy context.

Definition 2.2 (Strategy context, profile, outcome). A
(strategy) context from s is a partial function o: Ag —

Actt®(®) such that for all i € dom(c) we have that
o(i)(soar -+ sp) € M(sp,1). We write Cxta(s) for the
set of strategy contexts o from s with dom(c) = A. If
dom(o) = Ag, then we refer to o as a strategy profile, and
write Prof(s) = Cxtag(s) for the set of all strategy profiles
from s.

An outcome of a strategy context ¢ from s is a path
spaysy -+ € Path(s) such that for all n < w and i €
dom(c), it holds that o(i)(sov -+ s,) = o, . The set
of outcomes of o is denoted by Out(c). Note that if o is a
strategy profile, then necessarily Out(o) is a singleton, and
we then refer to the unique path in Out(o) as out(o).

Strategy contexts only specify the actions taken for a sub-
set of agents. The defining feature of ATL with strategy con-
texts is the ability to quantify over ways to extend contexts
with strategies for other agents. This process of extension is
referred to as merging.

Definition 2.3 (Merge). The merge of strategy contexts o
and o’ is the strategy context o X ¢’ defined by letting (o x
o')(i) = o'(i) if i € dom(o’), and (o x ¢')(i) = o(i)
if i € dom(o) \ dom(o’). If dom(a) N dom(c’) = 0 and

dom(o) Udom(c’) = Ag, we also write (o,0’) to denote
the merge o X o’.

In other words, in the merge o X o', we overwrite all
agents’ strategies in o with those from o', except for those
agents who do not have a specified strategy in ¢’. If the two
contexts’ domains do not overlap and cover all agents, we
write (o,0’) for the merge, which is borrowed from game
theory where it is commonly used in similar ways.

We can now finally start introducing XAT L 4o. The syn-
tax consists of context formulas o (interpreted over contexts)
and path formulas ® (interpreted over paths), defined by the
following grammar.

pu=pleVe |-l (A | (Ap | OP
Di=p|do, | PVP|-D|XD.

Here, p € Prop, A C Ag,i € Agand a € Act.

The operator (A} quantifies existentially over strategy
contexts defined for A and merges them with the current
context. The operator (A) releases the context for A: it for-
gets the strategies of agents in A. The operator <> quanti-
fies existentially over the outcomes of the current context.
Path formulas are interpreted with X being the next-time op-
erator which moves to the next point in a path (and moves
the strategy context accordingly). The proposition do; , says
that agent ¢ does action a at the current time on a path.

We can define other Boolean connectives as abbreviations
in the standard way. Furthermore, we can define the duals
[A] = —~({A)—and O = -

Remark 2.4. Note that our presentation of the syntax de-
viates slightly from the original presentation of ATL with
strategy contexts, in that we have separate operators (- A
(for quantification over contexts) and < (for quantification
over outcomes). This is innocent, as these separate opera-
tors are also definable in the original syntax of ATL with
strategy contexts.

As examples of formulas, consider (Ag)<Xdo; 4, say-
ing some profile has an outcome where ¢ does a next, and
(Ag) A\;({:})OXp, saying there is a strategy profile achiev-
ing p next, immune to unilateral deviation.

We now define the formal semantics of our logic
XATLgc do. Given a CGS G, a state s € G, a context o from
s and a path w € Path(s), we specify through simultaneous
induction over context formulas ¢ and path formulas ¢ the
satisfaction relations G, s, o IF ¢ and G, 7, o |- .

A bit of notation is required before the semantics of con-
text formulas: given a partial function f: X — Y and X' C
X, we write f|x- for the restriction of f to X': the partial
function f|x/: X — Y with dom(f|x/) = dom(f) N X’
and f|x/(z) = f(x) for z € dom(f|x/).

G,s,olFp p € L(s)
G,s,0lFpVY <= G,s,0lFporG,s,ol-y
G,s,0lF—p <= G,s,0F ¢
G,s,0lF ({A)p < Jo' € Cxta(s): G,s,0 x o' IF ¢
<
e

!

G,s,o - (A)p
G,s,0lF O

G,s,alzlF ¢
Ir € Out(o): G, m,0l- P



For the semantics of path formulas we are again required
to introduce some notation: given a context ¢ from s, as
well as a joint action « with T'(s, )], we define o, to
be the context from sy = 7T'(s,«) obtained by letting
o) (soa1 -+ - 8p) = o(i)(saspay - - - 8, (in other words,
we ‘push’ o ahead one step in time via «). Also, given 7 =
Soa181 - - - € Path(s) we write hd(m) = s¢, act(n) = aq
and tl(7) = syag - -+ € Path(sy).

G,molF¢ <= G,hd(m),0lF ¢
G, 7,0 lFdo;, <= act(n)' =a
G,molF®VVY <— G,m,0lFPorG,m,ol- T
G,molF =P «— G,m,oclF ®
G, m 0l X® = G,tl(7), Oact(n) IF

We will often write G, s I ¢ to mean G, s, € I- ¢, where
€ is the empty strategy context (i.e. dom(e) = (). Given a
strategy profile o, we will also often write G,o IF @ in-
stead of G, out(o), o I ® (the idea being that since strategy
profiles uniquely determine a path, we can directly evaluate
path formulas on them).

It is simple to see that the satisfiability problem (and
therefore also the validity and entailment problems) of
XAT L 4o 1s decidable: the logic possesses a bounded model
property, and one can enumerate all models up to a certain
size since the sets of agents and actions are fixed. While
complexity analysis is beyond the topic of this paper, since
our focus is on studying and characterising revision opera-
tors, the decidability is conceptually useful as it also allows
for checking coherence, as defined in Section 3.

3 Intention Systems and Coherence

Having introduced the syntax and semantics of XATLsc do,
we can now spell out what we mean by group intentions in
the style of Shoham (2009). We consider each group’s inten-
tion to be a path formula, describing actions and outcomes
the coalition will perform or bring about. A collection of
such formulas for each coalition constitutes what we call a
basic intention system. The adjective ‘basic’ is used here, as
we will later introduce a more expressive construction.

Definition 3.1 (Basic intention system). Let Coal = 248 \
{0} be the set of coalitions. A basic intention system is a
coalition-indexed family I = {74} saccoal of path formulas
1 4. The set of all basic intention systems is denoted BIS.

Note that we can always represent coalitions without in-
tentions via trivial path formulas, i.e. 4 = T (where T is
any tautology like p V —p).

Our interest lies in the dynamics of intention systems.
When coalitions adopt new commitments, the resulting in-
tentions must remain coherent with each other and the
known environmental facts. Suppose two overlapping coali-
tions A and B share an agent a and have individually feasi-
ble intentions [ 4 and Ig. If the facts require a to act differ-
ently to satisfy I4 than to satisfy Ig, then a cannot do both,
and so the overall system becomes incoherent.

To obtain a definition of coherence, it is natural to gen-
eralize definitions from the single-agent setting. There, it is

defined, following the Strong Consistency Principle of Brat-
man (1987), as the existence of a model consistent with the
agent’s beliefs in which the agent has a strategy that achieves
all intended goals (Van Zee et al. 2020; Motamed et al.
2024). In multiagent systems, we replace the single strategy
by a strategy profile. We say that a profile o weakly satisfies
a basic intention system when the outcome of o fulfills ev-
ery coalition’s intention; the use of the terminology ‘weakly’
will become clear when we introduce a stronger notion of
satisfaction later.

Definition 3.2 (Weak satisfaction & coherence). Given
(G, s) and a strategy profile ¢ € Prof(s), a basic intention
system [ is weakly satisfied by o (denoted G,o I+, I) if
G, o IF I4 for all A € Coal. Given a context formula ¢ en-
coding constraints on the environment, I is weakly coherent
w.r.t. ¢ if there exists (G, s) with G, s IF ¢ and such that
there is o € Prof(s) with G, o I, 1.

While it is an immediate generalisation of single-agent
coherence, weak coherence assumes that a coalition can rely
on outside agents for their intentions, which is not realistic
if the agents do not form one single cooperative entity. To
avoid such an assumption, we also provide a stronger sat-
isfaction notion: a coalition’s intentions must be achievable
through its own strategic capabilities.

Definition 3.3 (Strong satisfaction & coherence). Given
(G, s) and a strategy profile o € Prof(s), a basic intention
system [ is strongly satisfied by o (denoted G, o ¢ I) if
for all A € Coal and contexts o'; € Cxtj(s) it holds that
G, (0]a,0';) Ik La. Given constraints , I is strongly co-
herent w.r.t. @ if there exists (G, s) with G, s IF ¢ and such
that there is o € Prof(s) with G, o Ik I.

In other words, a profile strongly satisfies a basic intention
system if every coalition’s part of the profile is sufficient for
achieving their intention, regardless of what the other agents
do. Note that strong coherence implies weak coherence.

Example 3.4. Alice (a) and Bob (b) are finishing up a joint
article. Three steps are left before submission: one of the
proofs needs to be completed, an introduction has to be writ-
ten, and the authors need to have a final discussion together.
Potentially, agents may also wish to rest. We model this sce-
nario with three actions writeProof, writelntro, and discuss,
as well as a propositional variable done representing that
submission is completed.

We describe three possible basic intention systems that
the agents may adopt. In the first, /', we have I} =
doa,writeProof’ I[} = dob,writelntro, and I;b = XXdone.
In the second, I?, the intentions are I2 = do, writeProofs
Ig = dop,writelntro /A Xd0p discuss, and Iib = XXdone. Fi-
nally, in the third, I®, the intentions are I2 = dog, writelntros
I} = dop writelntro, and If;”b = XXdone.

Take as constraints ¢ the statement that the agents can
write the proof and introduction, that discussion requires
the proof and introduction to be written, and that the pa-

per is done after discussion. Le. ¢ = [O(Xdogiscuss —
(dowriteProof A dowritelntro) A XXdone <> Xdo{a,b},discuss)y
where we use abbreviations do, = do,, V do, and



do{a’b}_,z = dog ; A doy , for actions x. We then see that
Itis strongly and, as a consequence, weakly, coherent w.r.t.
: there is a strategy profile (in some CGS) in which Al-
ice writes the proof, Bob writes the introduction, and they
then discuss to finish, with every coalition’s strategies being
sufficient for their intentions. However, for 12, we only get
weak coherence: Bob intends to write the intro and discuss
after, even though that requires Alice to first write the proof,
which Bob cannot unilaterally enforce. Finally, for I we
also lose weak coherence, since the agents cannot finish the
paper if no one writes the proof.

Strong satisfaction removes the cooperation assumptions
made by its weaker counterpart by preventing coalitions
from relying on outside agents. On the other hand, in some
cases, it may be natural to allow some mild, rational assump-
tions on how others act. One can think of alternative, inter-
mediate notions of coherence that achieve this. For example,
we could require each coalition to guarantee its goal if the
others behave consistently with their own intentions. One
could also demand that coalitions act in a way that actively
brings about their intention (to prevent situations where a
coalition intends something that is under a disjoint coali-
tion’s control), adapting existing notions of group respon-
sibility in CGSs (Yazdanpanah et al. 2019; Gladyshev et al.
2025). Such middle-ground notions still block weak coher-
ence’s assumptions while allowing limited and reasonable
interdependence. We choose to focus on weak and strong
coherence, leaving such notions to future work.

Our main object of study is a revision operator: an oper-
ator e that, given environmental constraints ¢ and two (for
now, basic) intention systems [ and J, returns I e, J, be-
ing the outcome of revising I by J w.r.t. ¢. We will require
several rationality postulates, in particular: if J is coherent
(for the chosen notion of coherence) with respect to ¢, then
sois I e, J. However, in multiagent settings, coherence
can often be restored in several incomparable ways, and a
principled operator should not arbitrarily select one.

Consider agents a, b with intentions I, = do,_, and I, =
dop . A new directive for their joint coalition {a, b} arrives:
exactly one of them must perform z, i.e. the system J with
Jta,py = (dog z A —doy ) V (—do, ; A doyp ). Adding J to
I breaks coherence. Minimal repair requires dropping either
I, or Ip; nothing distinguishes the two options. Following
other work on indeterminate belief revision (Lindstrom and
Rabinowicz 1989; De Rijke 1994), we let the operator return
both repaired systems. In the Katsuno—Mendelzon view, this
corresponds to minimising w.r.t. a nontotal preorder, whose
minima may contain several incomparable elements.

Producing several outcomes amounts to returning a dis-
Jjunction of basic intention systems. Because no single basic
system K can, in general, capture the disjunction “I or J,”
we generalize to intention systems: finite disjunctions of ba-
sic intention systems.

Definition 3.5 (Intention system). An intention system T C
BIS is a finite nonempty subset of basic intention systems.
We denote the set of all intention systems by IS.

Given intention systems Z and J, we define the conjunc-
tionTNJ = {{Ia NJataccoa | I € Z,J € J} and the

disjunctionZUJ =T U J.

Given (G, s) and o € Prof(c), we say that an intention
system Z is weakly (resp. strongly) satisfied by o, denoted
G, o IFw I (resp. G, 0 ks Z) if there is I € Z with G, o I+,
I (resp. G, o Ik I). Given constraints @, Z is weakly (resp.
strongly) coherent w.r.t. ¢ if there is (G, s) with G, s |- ¢
and such that there is o € Prof(s) with G, o I+, Z (resp.
G,o ks 1).

In what follows, we therefore work with revision opera-
tors on intention systems. This captures the intended inde-
terminacy: revising I by J under ¢ may return several in-
comparable options, collected as one intention system. For
homogeneity, we consider our revision operators to also take
in intention systems, though we note that we will give pos-
tulates later on that decompose revision of intention systems
into revision of basic ones, making this a harmless choice.

Definition 3.6 (Intention system revision operator). Denote
by Constr the set of constraints (context formulas). An in-
tention system revision operator is a function e: Constr x
IS x IS — IS, taking in constraints ¢ and intention systems
7 and J, and outputting 7 e, 7, to be read as the result of
revising Z with J relative to .

If the intention systems Z or J are singletons {I} or {J},
we drop the set brackets and write e.g. I o, J.

4 A General Representation Theorem

We now turn to postulates for revision operators and their se-
mantic characterisation. As we will explain, we achieve this
via a more general theorem, which we prove in this section.

Following the approach of Katsuno and Mendelzon
(1991) for belief revision over finite-signature propositional
logic, we seek a representation theorem: an operator satisfies
the postulates iff it selects, among the models that satisfy
the new information, those that are minimal in a preorder in-
duced by the original intention system, encoding how close
models are to satisfying the latter. This expresses revision as
satisfying a principle of minimal change.

Motamed et al. (2024) carry the idea over to intention re-
vision: they read coherence as logical consistency and in-
voke logic-agnostic results like those of Delgrande, Peppas,
and Woltran (2018) and Falakh, Rudolph, and Sauerwald
(2023). These approaches, however, rely on fotal preorders,
whereas indeterminate revision requires non-total ones. Sev-
eral incomparable minimal sets, and hence several admis-
sible outcomes, can coexist. Existing theorems thus do not
apply.

In order to obtain representation theorems for intention
system revision operators, we return to the original proof
technique of Katsuno and Mendelzon (1991): we isolate the
ingredients that do not rely on totality, and obtain a general,
logic-agnostic representation theorem that allows non-total
preorders, and covers both weak and strong coherence in a
single statement. Two additional parameters are introduced:
adisjunctive basis of “primitive” formulas (for intention sys-
tem revision, the basic intention systems) on which the op-
erator is specified, and a frame that restricts admissible pre-
orders to encode extra-logical priorities. With these tools in



place, we set up the abstract framework that underlies the
concrete instantiation in Section 5.
We begin our development by defining the basic setup.

Definition 4.1 (Logics). A logic is a triple L =
(F, M,Mod), where F is a nonempty set of formulas,
M is a nonempty set of models, and Mod: F — 2M
is the semantics. The logic is conjunctive if there exists
an operator A: F x F — F such that Mod(yp A ¢) =
Mod(¢) NMod (%)), referred to as conjunction. 1t is disjunc-
tive if there exists an operator Y : F x F — JF such that
Mod (¢ Y 1) = Mod(yp) U Mod(v), referred to as disjunc-
tion. And the logic is full if for every model M € M there
is a formula p € F with M € Mod(p).

A formula ¢ is satisfiable if Mod(yp) # (), and two for-
mulas ¢,v¢ € F are mutually unsatisfiable if Mod(¢) N
Mod(y) = 0. Given ¢,vp € F, we say ¢ entails
if Mod(p) € Mod(%)), and say ¢ is equivalent to 1 if
Mod(p) = Mod(v)).

A disjunctive basis for a disjunctive logic Lisaset B C F
such that for all satisfiable ¢ € F, there exist 51,...,08, €
B for which ¢ is equivalentto 81 Y - -+ Y f,.

A formula ¢ is an atom if it is satisfiable and for all ¢) €
F, either ¢ entails v, or ¢ and 1) are mutually unsatisfiable.
We write Ay, for the set of all atoms of L. The logic L is
atomistic if it is disjunctive, full, and Ay, is a disjunctive
basis for LL.

Noting that Y is associative up to equivalence, we will
write the expression 1 Y --- Y ¢,, without bracketing.

What we refer to as an atom, is referred to by Katsuno
and Mendelzon (1991) as a ‘complete’ formula. We instead
borrow terminology from lattice theory, where one speaks
of atoms and atomistic lattices, used similarly to the way we
use the terminology.

Next, we define the main object of study: revision opera-
tors. Note that unlike in Definition 3.6, these are the standard
binary operators of revision theory.

Definition 4.2. An LL-revision operator is a function e: F X
F—=F.

Before introducing assignments, the semantic object of
the representation theorem, some formal preliminaries are
needed. Given a set X, write Ord(X) for the set of preorders
on X. Given a preorder <, we denote its strict part by <, de-
finedby z < yiffz < yandy £ x. Given < € Ord(X) and
AC X, wewritemin(A,<)={x e A|-Jye Ay <z}
for the set of all <-minimal elements of A.

The representation theorems relate revision operators sat-
isfying postulates to assignments of preorders to formulas.
In the final theorem, these assignments will only be defined
on a disjunctive basis (corresponding to basic intention sys-
tems in the setting of group intentions). Therefore, the defi-
nition is parameterized by a subset of formulas.

Definition 4.3 (fC-assignment). Take £ C F. A K-
assignment is a function <(_y: KL — Ord(M) assigning to
each formula ¢ € K a preorder <, on M. We say = is faith-
Sul if for all p, ¢ € K, it holds that (i) if M, N € Mod(),
then M £, N; (i) if M € Mod(y) and N & Mod(¢), then
M <, N;and (iii) if o is equivalent to 1), then <, = =<,.

We say = is logical if whenever M and N satisfy precisely
the same formulas (i.e. M € Mod(%) iff N € Mod(¢) for
ally € F),then M <, N and N =<, M forall ¢ € K.

Given K-assignments <! and =<2, we say =<' min-
extends <? if whenever M <§, N, it holds that N €
min(Mod (), <}) implies that M € min(Mod (%), =})
forall ¢ € K and ¢ € F with M € Mod(v).

Given an LL-revision operator e, a disjunctive basis 3, and
a B-assignment <, we say e and =< are compatible if for all
p, ¥ € F with ¢ equivalent to 51 Y - - - Y 3, (where 3; € B),
it holds that Mod(y e ¥) = |J, <,«,, min(Mod(¢), <g,).

Let us unpack some of these definitions. Faithfulness, as
in the original work of (Katsuno and Mendelzon 1991), cap-
tures that the assignment provides a measure of how close
models are to satisfying a formula: M =<, N is to be read as
saying that M is closer to being a model of ¢ than N. We in-
troduce the notion of logicality to capture that an assignment
should not be able to make finer distinctions than the logic
itself: if a distinction is made between models, then this dis-
tinction has to do with some difference in the models’ logi-
cal properties. The notion of min-extension is interpreted as
follows. If <! min-extends <2, then this says that whenever
<2 expresses a strict preference of one model over another,
that the process of minimization (corresponding to revision)
has to reflect that preference. Finally, compatibility captures
the essence of the representation theorem, stating when a re-
vision operator is semantically described by an assignment
(in which the disjunctive basis is respected).

We can now define frames, which we use to add extra-
logical constraints to revision operators. These are families
of preorders of formulas, corresponding semantically to or-
dered partitions of the set of models. Intuitively, the ordering
of cells in a partition captures that revision should prioritize
satisfying certain formulas over another. More formally, we
will ask that our assignments min-extend the frame inter-
preted as an assignment in the natural way.

Definition 4.4 (IC-frame). Given K C F, a K-frame is a
K-indexed family = = (E,,C,)4ek, in which 2, C F
is a set of formulas, and C, € Ord(E,) is a preorder. We
require that all formulas in =, are satisfiable, that all pairs
Y, x € I, are either equivalent or mutually unsatisfiable,
and that UwGEw Mod(¢) = M. We say E is faithful if for
all ¢ € K and 7, x € E,, it holds that

1. Either ¢ and v are mutually unsatisfiable, or v entails .
2. If 7 and x both entail ¢, then ¢ I, x.
3. If ¢ entails ¢ but x does not, then ¢ C,, x.

We can now begin presenting postulates. In the follow-
ing, take the logic IL to be conjunctive and disjunctive, and
let B be a disjunctive basis for I with = a B-frame. All for-
mulas are assumed to be arbitrary formulas from F, unless
specified otherwise. The postulates (R1)-(R5) and (R7) are
directly from Katsuno and Mendelzon (1991) and use the
same numbering: (R6) is not used to allow non-totality. The
postulate (R85) is a slightly tweaked version of their pos-
tulate (R8), modified to account for the disjunctive basis as
required in the representation theorem. The postulates (R=)



and (RDL) are novel, expressing min-extension of the frame

and revision respecting disjunctions, respectively.

(R1) ¢ e 1) entails .

(R2) If p A7) is satisfiable, then ¢ e ) is equivalent to p A ).

(R3) If ® is satisfiable, then ¢ e 9 is also satisfiable.

(R4) If ¢ is equivalent to ', and 1) is equivalent to 1)/, then
@ ® 1) is equivalent to ¢’ e 1),

(RS) (p @) A x entails p o (Y A X).

(R7) If e ) entails ¢" and ¢ e ¢’ entails 1), then ¢ e ¥ is
equivalent to ¢ e 1),

(R8B) For B € B, (B o)) A (S 1)) entails 5o (¢ Y )).

(RE) For f € Band p,v € Zgwith pp Cg v, if (B e ¢) Av
is satisfiable, then p A v entails 3 e ).

(RDL) (¢ Y ¢') o ) is equivalent to (¢ @ 1) Y (¢ ® ).
Before presenting the representation theorem, we first in-

troduce some notation. Given a K-frame =, define the K-

assignment == by letting M <2 N iff there exist ¢, x € =,

with M € Mod(¢), N € Mod(x) and ¢ T, x. It is easily

verified that ji is indeed a preorder. We say a KC-assignment

= respects = if it min-extends <E.

Theorem 4.5 (General representation theorem). Let IL be a

conjunctive, disjunctive and atomistic logic, and let B be a

disjunctive basis for L with a faithful B-frame =. The fol-

lowing statements hold:

* Every faithful and logical B-assignment respecting = is
compatible with some IL-revision operator satisfying (R1)
—(R5), (R7), (R8B), (RZ), and (RDL).

e Every LL-revision operator satisfying (R1) — (R5), (R7),
(R8B), (R=), and (RDL) is compatible with some faithful
and logical B-assignment respecting =.

Proof sketch. The idea is to emulate the proof of Katsuno
and Mendelzon (1991, Theorem 5.2) for atomistic logics.
For the first half, using the logicality of the assignment, the
set of minimal models of a formula must be described by a
disjunction of atoms, allowing us to define our operator. We
then verify that the postulates hold, taking the disjunctive ba-
sis into account. For the second half, note that in the original
proof of Katsuno and Mendelzon (1991, Theorem 5.2), the
assignment is defined using the observation that for every
set of models there exists a formula that is precisely satis-
fied by that set. The assignment is then defined by ordering
a pair of models on the basis of which of the two models are
contained in a revision by the formula expressing the pair. In
our setting, we generally cannot capture every set of models
via a formula. Instead, we work with the atoms that models
are contained in, ordering models on the basis of which of
their atoms are consistent with a revision by the disjunction
of the atoms. O

We observe in the following proposition that, to a degree,
a symmetric analogue of (RDL), stating that we have dis-
junctive factoring on the right of the revision operator, is a
consequence of our other postulates. For intention system
revision, this together with (RDL) will mean that intention
system revision operators are fully determined by their ac-
tions on basic intention systems.

Proposition 4.6. If e satisfies (R1) — (R5), (R7), (R8B)
and (RDL), then for all p,v,¢' € F with ¢ equivalent
to By Y -+ Y By, there exist nonempty K; C {i,¢'} for
1 < i < n such that the formula © o (¢ Y 4)') is equivalent

to Y1§ign YxeKi Bi ®X.

Proof sketch. The proof applies (Falakh, Rudolph, and
Sauerwald 2023, Proposition 11.7), taking the disjunctive
basis into account. ]

S Representation Theorem for Intention
System Revision

In this section, we formulate rationality postulates for inten-
tion system revision and prove a Katsuno—Mendelzon—style
representation theorem instantiating the approach from Sec-
tion 4. The key move, which follows the single-agent treat-
ment of Motamed et al. (2024), is to read both weak and
strong coherence in XATLg 4, as satisfiability in new log-
ics (in the sense of Definition 4.1) whose (i) formulas are
intention systems, (ii) models are strategy profiles, and (iii)
truth clause incorporates the constraints . The representa-
tion theorem then expresses that revision works via minimal
change: to revise old intentions by some new ones, we se-
lect those profiles satisfying the new intentions that are min-
imally close to satisfying the old ones.

These constructed logics must satisfy atomisticity as in
Definition 4.1, but unbounded time prevents that: an inten-
tion can always be extended with claims about later mo-
ments that are neither entailed nor contradictory, disallowing
atoms. In order to recover atomisticity, we follow Van Zee
et al. (2020) by considering revision operators up to a finite
time horizon. This change is innocent, since few applications
allow intentions referring to an unbounded length of time.

Let us begin by defining the basic setup of bounding time.
Given an intention system Z, we define its temporal depth
td(Z) to be the maximal nesting depth of the X-operators
appearing in any formula in Z.

Definition 5.1 (Time-bounded semantics, L)’¥ and LL»¥).
Let n > 0. Given (G, s) and (G/, s'), together with strat-
egy profiles o and ¢’ (from s and s’ respectively), we write
G,o0 = G',0’ (resp. G,o0 = G/, o) iff for all intention
systems Z with td(Z) < n it holds that G,o I+, Z iff
G',o' Ik T (resp. G,o ks T iff G',o’ s 7). We also
write G, IF, T (resp. G,o IF ) if there is (G',0")
with G,o0 =} G',0’ (resp. G,0 =" G’,0’) such that
G',0' Ik T (resp. G', o’ I+ T).

We say that an intention system Z is weakly (resp.
strongly) coherent w.r.t. constraints ¢ up to n, if there exist
G, s and a strategy profile o from s such that G, s I+ ¢ and
G,o IF), T (resp. G, o I+ 7). An intention system Z weakly
(p,n)-entails J if G,o -, T implies G, o IF}, J. Strong
(¢, n)-entailment is defined analogously. Similarly, Z and J
are weakly (resp. strongly) (¢, n)-equivalent if they weakly
(resp. strongly) (¢, n)-entail each other.

Fix constraints ¢. We define the logics (in the sense of
Definition 4.1) L»'¥ and IL7»¥ by taking intention systems as
formulas, pairs (G, o) of CGSs and strategy profiles (with o
from s) as models, and defining the semantics in L"'¥ (resp.



L™%) of Z to be the set of all (G, o) such that G, s I ¢ and
G,o Ik}, Z (resp. G, o IF] I).

Weak (resp. strong) coherence with respect to ¢ up to
horizon n is exactly satisfiability in L»'¥ (resp. L{"¥). En-
tailment and equivalence are therefore defined relative to the
same pair (n,@): environmental constraints (e.g., “a must
always be followed by b”) alter what an intention system
implies, while times beyond n are rightly ignored.

The following theorem states these logics using weak and
strong satisfaction have the properties we require to instan-
tiate the representation theorem from Section 4.!

Theorem 5.2. The logics L% and L.}»% are conjunctive,
disjunctive and atomistic.

Proof sketch. 1t is clear that the logics are conjunctive and
disjunctive using the operations I and L/ on intention sys-
tems defined in Definition 3.1. Showing that the logics
are atomistic is more complicated. The method consists
of first establishing that the equivalence relations =]} and
= coincide with an appropriate notion of n-step bisim-
ilarity for strategy contexts; in other words, we show a
(bounded) Hennessy-Milner theorem (see e.g. Goranko and
Otto (2007) for an introduction to bisimulations in modal
logic). We then show that n-step bisimilarity is equiva-
lent to the existence of winning strategies in certain Ehren-
feucht-Fraissé games. The existence of such strategies is
logically definable via intention systems. It follows that that
every equivalence class of =]\ and =!' are expressed by in-
tention systems under the appropriate semantics. In partic-
ular, the construction of these intention systems shows that
there are finitely many equivalence classes. By definition of
= and =7, every intention system must then be equivalent
to a disjunction of the constructed intention systems under
the appropriate semantics. O

Showing atomisticity makes use of an innovative proof
method. For readers familiar with the terminology, we note
that the proof works by showing a Hennessy-Milner theorem
for an appropriate notion of bisimulation: full details are in
the supplementary material.

Now, we can begin presenting postulates for intention sys-
tem revision operators, obtained by instantiating the work
from Section 4. In the following, we drop the words ‘weak’
and ‘strong’: effectively we get two sets of postulates, ob-
tained by inserting these adjectives uniformly throughout.
Additionally, we fix a parameter n > 0.

(I1) Z e, J (i, n)-entails J.

(I2) If Z 11 J is coherent w.r.t. o up to n, then Z o, J is
(¢, n)-equivalent to Z M 7.

(I3) If J is coherent w.r.t. ¢ up to n, then Z e, J is also
coherent w.r.t. ¢ up to n.

(I4) If T is (p,n)-equivalent to Z’, and J is (¢, n)-
equivalent to J’, then Z e, J is (p,n)-equivalent to
I e, J.

"We note that the alternative coherence conditions we described
briefly in Section 3 do not satisfy the required properties, meaning
that a representation theorem for them would require a completely
different proof technique.

(I5) (Z e, J) MK entails Z o, (J MK).

(I7) IfZ e, J (p,n)-entails 7' and Z e, J’ (¢, n)-entails
J,thenZ e, J is (¢, n)-equivalent to 7 o, J'.

(I8-BI) For basic intention systems I, it holds that (I e,
J)N(I e, T) (p,n)-entails I o, (JLT").

(IDL) (ZUZ') e, J is (¢,n)-equivalent to (Z e, J) U
(T o, ).

These postulates instantiate those from Section 4. (I1)
ensures success of revision, (I2) ensures revision does not
modify intentions unnecessarily, (I3) demands coherence
when possible, and (I4) gives syntax-invariance. (I5), (I7)
and (I8-BI) are technical guarantees that ensure that revision
semantically works through minimal change, with (I7) and
(I8-BI) allowing non-totality, the latter using basic systems.
(IDL) allows us to decompose revisions of intention systems
to those of basic intention systems.

At this point, we could already present our representation
theorem, but we add one more optional parameter allowing
extra conditions of interest to the multiagent setting. One
may want revision to respect coalition-sensitive priorities:
for example, (i) keep the intentions of as many coalitions as
possible, or (ii) guarantee that a designated core coalition is
disturbed only as a last resort. We explain how such priori-
ties are incorporated into revision operators via a postulate.

Consider a strict preorder C on 2¢°2"\ {()}, the non-empty
subsets of Coal, which encodes priorities; we read A C B
as saying that preserving exactly the intentions of A takes
precedence over B, with incomparable pairs being indiffer-
ent in revision. We fold [ into the framework by building
a frame (Definition 4.4), and using that frame in postulate
(RZ), forcing revision to honor the chosen priority order.

Let us make precise what it means for a revision operator
to behave according to the priority order. Consider a basic
intention system /. For nonempty A C Coal, define basic
intention systems keeph(I) = {I4 | Ac A} U{~I4 | A ¢
A} and keep? (I) = {I4 | A€ A} U {(A)(A)O-I4 | A ¢&
A}. Then a strategy profile weakly satisfies keep’ (I) (resp.
strongly satisfies keepf([ )) iff A is the greatest set of coali-
tions for which the profile weakly (resp. strongly) satisfies
the basic intention system {4 | A€ AJU{T | A¢ A}.In
other words, keep” (1) (resp. keep’ (1)) expresses that a pro-
file precisely weakly (resp. strongly) satisfies the intentions
in I for coalitions in A.

Using keepls(I) and keep” (1), we can give the following
postulate expressing that a revision operator respects the pri-
ority ordering. Let x € {w, s} denote ‘weak’ or ‘strong’ (and
as before, consider the chosen adjective to apply uniformly
to coherence and entailment).

(IPrio) For basic intention systems I and J, if (I e, J) I

keepZ (1) is coherent w.r.t.  up to n, then for every A C
B, J M keep? (I) (p,n)-entails I o, J.

Let us read out what this means. The postulate states that if
the revision outcome I e, J admits profiles that preserve
precisely B’s intentions from I, then every profile preserv-
ing a more important set A of coalitions’ intentions from [



that the revision could also have picked (because they sat-
isfy J) must also be admitted. This is precisely what we
want: among profiles that accommodate .J, those that pre-
serve a more important family of coalitions should never be
rejected while a less important family is accepted.

The connection to frames and the (RZ=) postulate is im-
mediate using the constructed keep’(I). We say a BIS-
assignment (as in Definition 4.3) respects [ if it respects the
corresponding frame. Note that BlS-assignments are map-
pings from basic intention systems to preorders over strategy
profiles whose underlying state satisfies the constraints.

Instantiating our representation theorem in Theorem 4.5,
making use of the required properties shown in Theorem 5.2
we can now conclude with the following representation the-
orem for intention system revision operators.

Theorem 5.3 (Intention system representation theorem).
Fix constraints o, n > 0, let L € {L3%, LM%}, and take
a strict preorder T on 2%\ {Q}. The following hold:

* Every faithful and logical BIS-assignment respecting
is compatible with some intention system revision opera-
tor satisfying (11) — (15), (I7), (I18-BI), (IPrio), and (IDL).

e Every intention system revision operator satisfying (I1) —
(15), (I7), (I8-BI), (IPrio), and (IDL) is compatible with
some faithful and logical BIS-assignment respecting .

Note that by (IDL) and Proposition 4.6, revision reduces
to that of basic intention systems, in the sense that the revi-
sion of Z by J is equivalent to a disjunction of revisions of
basic intention systems from Z and J. And also note that if
we use a trivial, empty priority preorder, then (IPrio) trivial-
izes, giving a representation theorem omitting priorities.

It is important to observe that Theorem 5.3 is constructive
and operational: given any assignment meeting the required
conditions, the theorem explicitly constructs the correspond-
ing intention system revision operator. We work out an ex-
ample of an intention system revision operator obtained in
this fashion. Intuitively, this operator resolves conflicts be-
tween the original and the new intentions by by progres-
sively trimming parts of the original intentions as far in the
future as possible, until all conflicts are resolved.

Fix n > 0 and constraints ¢. Consider the logic L['¥.
Given I € BIS, a coalition A € Coal, a CGS G, and a
strategy profile o from state s, we define the failure depth
fds' (o) as, if it exists, the least k < n such that looking at the
k-step prefix n = spa 51 - - - s of the outcome out(o) €
Path(s), it holds that G, 7, o W I 4 for all paths 7 € Path(s)
that extend 7). Intuitively, the failure depth counts how many
steps in time we must move along the outcome of ¢ before
1 4 is falsified. If it does not exist, this means that /4 cannot
be falsified within n steps.

We now define a BIS-assignment. Let (G, o) <7 (G',0")
iff either (i) G, o Ik, I, or (i) G, o W}, I, G',o’' W], I and
fd#(c) > fdf'(¢’) for all A € Coal (noting that the fail-
ure depths are defined since neither profile weakly satisfies
I up to n). The first clause is necessary for faithfulness, as
in those cases the failure depth will not exist. For an intu-
ition, note that (G, o) <; (G',¢’) precisely when o never
fails I earlier than o', while ¢’ does fail I earlier for some
coalitions.

Faithfulness and logicality area easy to verify: by the first
clause of the definition of the assignment, we have that the
least elements of < are precisely those (G, o) with G, o Ik,
1, and the definition of the assignment is completely syntax-
invariant and based on satisfying formulas.

So applying our representation theorem, we get an inten-
tion system revision operator compatible with the assign-
ment, and satisfying all our postulates. By compatibility, this
operator computes the revision I e, J of basic intention
systems (with other revision reducing to these cases by dis-
junctive factoring) by those profiles that weakly satisfy J
and are minimal in the ordering of I. Conceptually, this says
that the revision is obtained by taking J and maintaining [
as long as possible, for as many coalitions as possible.

6 Conclusion

This work provided the first general framework for revis-
ing interconnected systems of multiagent intentions. In-
tentions for every coalition are expressed in an appropri-
ate logical language, coherence is analysed via feasibil-
ity and enforceability criteria, and rational revision oper-
ators are axiomatised and semantically characterised by
a Katsuno—Mendelzon-style theorem that allows non-total
preorders. The framework provides a unifying theoretical
foundation for maintaining joint commitments in complex
autonomous systems. Future work includes the development
of more concrete revision operators instantiating the frame-
work, integration of stochastic environments, and unifying
our framework with methods for individual and/or coalition-
level intention revision.
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