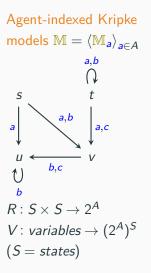
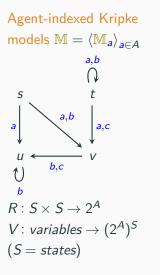
Boolean-Valued Multiagent Coalgebraic Logic

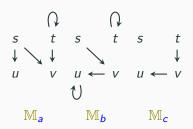
Nima Motamed Utrecht University April 3, 2022 | CMCS'22 | Munich, Germany

(based on work with Alexander Kurz & my Master's thesis)

"A wide range of many valued logics are in the literature, but one family is notably missing: those whose truth value space is a Boolean algebra other than {false, true}." Fitting (2009)


"A wide range of many valued logics are in the literature, but one family is notably missing: those whose truth value space is a Boolean algebra other than {false, true}." Fitting (2009)


Technically sensible, but conceptually...



Fitting's Boolean-Valued logic

CABA $2^{A} \sim A$ is a set of agents

Agent-indexed Kripke models $\mathbb{M} = \langle \mathbb{M}_a \rangle_{a \in A}$ a,b S a.b a.c а b,c Ь $R: S \times S \rightarrow 2^A$ V: variables $\rightarrow (2^A)^S$ (S = states)

Formulas same as usual modal logic Semantics

$$\llbracket - \rrbracket_{\mathbb{M}}$$
: formulas $\rightarrow (2^A)^S$

satisfying 'Slicing Theorem':

 $\llbracket \varphi \rrbracket_{\mathsf{M}}(s) = \{ a \in \mathsf{A} ; \mathsf{M}_a, s \models \varphi \}$

Agent-indexed Kripke models $\mathbb{M} = \langle \mathbb{M}_a \rangle_{a \in A}$ a,b S a,b a.c а b,c Ь $R: S \times S \rightarrow 2^A$ $V: variables \rightarrow (2^A)^S$ (S = states)

Formulas same as usual modal logic Semantics

$$\llbracket - \rrbracket_{\mathbb{M}} : \textit{formulas} \to (2^A)^S$$

satisfying 'Slicing Theorem':

$$\llbracket \varphi \rrbracket_{\mathbb{M}}(s) = \{ a \in A ; \mathbb{M}_a, s \models \varphi \}$$

Truth value of φ is set of agents for whom it is true

"Alice and Bob both know that they themselves are wearing hats"

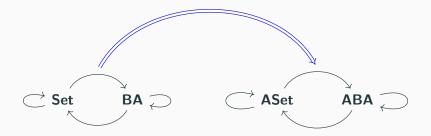
"Alice and Bob both know that they themselves are wearing hats" 'Usual' modal logic Assert $K_a h_a \wedge K_b h_b$ is true "Alice and Bob both know that they themselves are wearing hats" "Usual' modal logic Fitting's logic Assert $K_a h_a \wedge K_b h_b$ is true Assert Kh has truth value $\{a, b\}$ "Alice and Bob both know that they themselves are wearing hats" "Usual' modal logic Fitting's logic Assert $K_a h_a \wedge K_b h_b$ is true Assert Kh has truth value $\{a, b\}$ But note: limitations in expressive power (though we can address them) A has a partial (or pre-) ordering of relative expertise Agent-indexed Kripke models respect the ordering Truth values are upward closed sets of agents: $a \in [\![\varphi]\!](s)$ and $a \leq b$ implies $b \in [\![\varphi]\!](s)$ Interplay!

- How do we extend this to other transition structures and modal logics?
- Can we put more structure on the set of agents?
- How do these logics fit in the general picture?

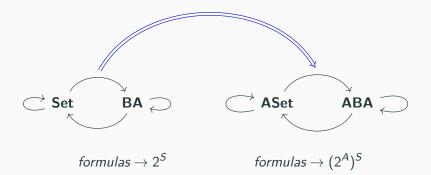
- How do we extend this to other transition structures and modal logics?
- Can we put more structure on the set of agents?
- How do these logics fit in the general picture?

Coalgebraic logic allows us to tackle these!

 Category ASet of sets and agent-indexed functions


- Category ASet of sets and agent-indexed functions
- equivalently, co-Kleisli
 category of product/copower
 comonad A × (-)

- Category ASet of sets and agent-indexed functions
- equivalently, co-Kleisli
 category of product/copower
 comonad A × (-)
- lifting Set-functors through dist. laws, *T*-coalgebras in
 ASet are agent-indexed
 T-coalgebras in Set


- Category ASet of sets and agent-indexed functions
- equivalently, co-Kleisli
 category of product/copower
 comonad A × (-)
- lifting Set-functors through dist. laws, *T*-coalgebras in
 ASet are agent-indexed
 T-coalgebras in Set

- Category ABA of BAs and agent-indexed homomorphisms
- equivalently, Kleisli category of power monad (-)^A

Logical connection

Logical connection

Slicing theorem, adequacy & expressivity, Fitting-style logic given naturally for **ASet**

Wrapping up

Ongoing work:

- All of this works for **Pos** and **DL** (giving expertise order). What other agent structures? Topologies, group actions...
- Strong relation (coalgebraic)
 Fitting logic to (nondeterministic)
 multiplayer game semantics and
 player role distributions fixing
 expressive power...

Wrapping up

Ongoing work:

- All of this works for **Pos** and **DL** (giving expertise order). What other agent structures? Topologies, group actions...
- Strong relation (coalgebraic)
 Fitting logic to (nondeterministic)
 multiplayer game semantics and
 player role distributions fixing
 expressive power...

Summing up:

- Fitting-style logics have potential to nicely express situations with agents
- In coalgebraic generalisation, Fitting-style logics are naturally associated to agent-indexed structures

Wrapping up

Ongoing work:

- All of this works for **Pos** and **DL** (giving expertise order). What other agent structures? Topologies, group actions...
- Strong relation (coalgebraic)
 Fitting logic to (nondeterministic)
 multiplayer game semantics and
 player role distributions fixing
 expressive power...

Summing up:

- Fitting-style logics have potential to nicely express situations with agents
- In coalgebraic generalisation, Fitting-style logics are naturally associated to agent-indexed structures

Thank you!

nima@motamed.nl | n.motamed@uu.nl | https://motamed.nl