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Motivation: intentions

Developing intention revision Could use probabilistic strategy
with uncertainty logic, probabilistic CTL
Following common BDI But no (known) decidable

approach by working within a satisfiability + model checking

temporal logic (in some cases)...

So here comes our logic: Finite MDP-PCTL*



Actions and propositions

Finite set A of actions, countable set Prop of propositional
variables

For each action a € A, a precondition pre, € Prop, and finite set
of postconditions Post, C Prop

Actions have uncertain outcomes, i.e. multiple possible
postconditions



Markov Decision Processes

Definition

An is a tuple M = (S, P, V), where S is a set of states,
P:S x A~ A(S) is the partial probabilistic transition function,
and V : S — 2P™P is the valuation.

(here, A(S) is the set of probability distributions on S, and ~~

denotes a partial function)



Markov Decision Processes

Definition

An is a tuple M = (S, P, V), where S is a set of states,
P:S x A~ A(S) is the partial probabilistic transition function,
and V : S — 2P™P is the valuation.

(here, A(S) is the set of probability distributions on S, and ~~
denotes a partial function)

MDPs are required to satisfy some coherence conditions, but these
are not important here, except for that they entail P(s, a) is



Markov Decision Processes
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Policies

How do we determine probability of reaching a state or sequence of

states?
Policies!

Usually these are functions S — A or S — A(.A), but in our
setting we consider (deterministic) finite policies with (bounded)

recall



Policies

Let S be the set of sequences in S of length n starting from s
(similar definition for S5")

Definition

For n >0, an is a pair (s, ) of an initial state
s € S, and a function 7 : Sf” — A such that always
Prer(s,.s) € V/(sk)-

Note that we allow O-step policies: here the agent has made



Policies

Let S be the set of sequences in S of length n starting from s
(similar definition for S5")

Definition

For n >0, an is a pair (s, ) of an initial state
s € S, and a function 7 : Sf” — A such that always
Prer(s,.s) € V/(sk)-

Note that we allow O-step policies: here the agent has made

Given an n-step policy (m,s), we get a probability distribution
pT € A(SPH) defined as

pe (st Sny1) H P(si,m(s1 - si))(si+1)



State formulas

pu=L|x|dos | pAp|-p| 0%
n-step history formulas

(Dl n= d>n+1 n=p ‘ (Dn+1 A ¢n+1 ‘ _\(DnJrl ‘ Xbn

x€Prop,ac A n>1 xe{<,<,=%#,2,>}rel0,1]NnQ



Semantics

For finite policies (s, )

7, s = x iff x € V(s)
7, s |= do, iff mis > 1-step, and 7(s) = a
7, s = O, iff there exists an n-step policy p

with initial state s such that
pe({s € I pos = d})par

For n-step s, and s € S™+1

msEpiff m,s =
m,s EX®iff 12 55+ 50401 F ®

where 72 is “m shifted forward to start from s"”



Example formulas

pre, A D;O_g(doa — Xop)

“The agent can execute a, and doing so will cause ¢ to hold
afterwards with probability at least 80%"



Example formulas

pre, A D;O_g(doa — Xop)

“The agent can execute a, and doing so will cause ¢ to hold
afterwards with probability at least 80%"

Dilx”Ogo.sx"’cp

“No matter how the agent acts in the next n steps, it is certain
that he can afterwards make it at least 50% likely that ¢ holds in
the next m steps”



Example formulas

Of interest to intention revision:

Consider intentions as commitments to perform an action at a
certain time, i.e. intentions are pairs (a,n) with a€ A and n > 1.
Given a set / of intentions and some 0 € [0, 1], the formula

exec(/,0) = QL5 /\ X"do,
(a,n)el

where npmax = max, nes 1 denotes that the agent can execute all

his intentions with certainty > 6

So coherence of intentions w.r.t. the agent’s beliefs can be defined
through satisfiability of the beliefs and exec

10



Decidability

Model checking is (obviously?) decidable - satisfiability is also
decidable!

To see this, we observe that we can bound model size by the policy
depth pd(¢) of a formula ¢, denoting the deepest amount of steps
the policies being quantified over in ¢ reach.

Theorem (Small model property)

If a formula @ is satisfiable, then it is satisfiable in an MDP with
at most as many states as a tree with depth pd(y) and branching
factor ). 4 |Post,|, at a policy of at most pd(y) steps.

(verified using standard unraveling techniques)

11



Decidability

Theorem (Satisfiability)
The problem of determining for a formula ¢ whether there exists
an MDP and finite policy (s, ) such that 7,s |= ¢, is decidable.

Proof sketch. Using the bound z given by the small model
property, iterate over sets S = {s1,...,s,} with y < z and
valuations V' (need only consider those propositional variables

appearing in ¢ plus pre- and postconditions)
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Decidability

Theorem (Satisfiability)
The problem of determining for a formula ¢ whether there exists
an MDP and finite policy (s, ) such that 7,s |= ¢, is decidable.

Proof sketch. Using the bound z given by the small model
property, iterate over sets S = {s1,...,s,} with y < z and
valuations V' (need only consider those propositional variables

appearing in ¢ plus pre- and postconditions)

We construct a FOL sentence « in the language of real closed
fields (RCF) such that

« is true in the theory of RCF
<= there exists P and (s, ) such that 7,s = ¢ in (S, P, V)

12



Decidability

Note that we can encode P through variables p; ; , denoting

P(si, a)(s;j) (taking care to allow P(s;, a) to be undefined), and
that we can define an RCF formula 8(p) that is true in RCF iff the
variables encode a well-defined P.

13



Decidability

Note that we can encode P through variables p; ; , denoting

P(si, a)(s;j) (taking care to allow P(s;, a) to be undefined), and
that we can define an RCF formula 8(p) that is true in RCF iff the
variables encode a well-defined P.

If we can define an RCF formula 7, ; ~(p) that is true in RCF
together with 3(p) iff 7, s; = ¢, we could put

a=3pBE)A \  Yeixp))

n<pd(p)
n-step s;, T

and the well-known decidability of RCF would then give us our

decision procedure.
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Decidability

Get ready for a lot of subscripts. Leave now while you can!
We (simultaneously) define the following RCF formulas:

® OniXmpar (Where X C SS’I’,+1 and 7 is n-step), meaning
llﬂg(X) N r”
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Decidability

Get ready for a lot of subscripts. Leave now while you can!

We (simultaneously) define the following RCF formulas:

® 0piX,mpar (Where X € SMH1and  is n-step), meaning
Wg(X)bar”

 knowr (Where w € S"™1 and 7 is n-step from w), meaning
“T,wE 9"
E.g. Knxowr = Kn—1,0,mwpi,m"

® \o.inxx Mmeaning “X is the set of all w € Sg“ such that
T, s = @
Defined as /\q>7,",,7ﬂ-7x = /\WEX Rn,dw,r A /\WES£.+1\X TKp,dw,r

e And the 7, ; » mentioned before I

E.g. VoL, ®,im = vn—step Siy p \/XCSS”.Jrl )\¢7i7n7p7X - 6”7"7X77r7><17r
- 1
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Take a breath now. We're having drinks in a bit.

ii5)



Wrapping up

Summing up:

e \We have a logic allowing us to
reason about finite histories,
MDPs, and policies

e The logic has decidability of both
model checking & satisfiability
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Wrapping up

Summing up: Future work:

) i : S
e We have a logic allowing us to e Intention revision!

reason about finite histories, o @uEEiie eoasens
MIDIFS, ael [FeilEEs closer to Al/RL practice
e The logic has decidability of both o And if the heavens allow it,
model checking & satisfiability a better name for the logic
Thank you!

nima@motamed.nl — n.motamed@uu.nl — https://motamed.nl
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