A Probabilistic Finite Temporal Logic for Policies and Intentions

Nima Motamed, Natasha Alechina, Mehdi Dastani, Dragan Doder August 26, 2022 — LAMAS&SR 2022 — Rennes, France

Utrecht University

A Probabilistic Finite Temporal Logic for Policies and Intentions

Nima Motamed, Natasha Alechina, Mehdi Dastani, Dragan Doder August 26, 2022 — LAMAS&SR 2022 — Rennes, France

Utrecht University

A Probabilistic Finite Temporal Logic for Policies and Intentions ???

Nima Motamed, Natasha Alechina, Mehdi Dastani, Dragan Doder August 26, 2022 — LAMAS&SR 2022 — Rennes, France

Utrecht University

Developing intention revision with uncertainty

Following common BDI approach by working within a temporal logic Developing intention revision with uncertainty

Following common BDI approach by working within a temporal logic Could use probabilistic strategy logic, probabilistic CTL But no (known) decidable satisfiability + model checking (in some cases)... Developing intention revision with uncertainty

Following common BDI approach by working within a temporal logic Could use probabilistic strategy logic, probabilistic CTL But no (known) decidable satisfiability + model checking (in some cases)...

So here comes our logic: Finite MDP-PCTL*

Finite set ${\mathcal A}$ of actions, countable set Prop of propositional variables

For each action $a \in A$, a precondition $pre_a \in Prop$, and finite set of postconditions $Post_a \subseteq Prop$

Actions have uncertain outcomes, i.e. multiple possible postconditions

Definition

An MDP is a tuple $\mathbb{M} = \langle S, P, V \rangle$, where S is a set of *states*, $P: S \times \mathcal{A} \rightsquigarrow \Delta(S)$ is the *partial probabilistic transition function*, and $V: S \rightarrow 2^{\text{Prop}}$ is the *valuation*.

(here, $\Delta(S)$ is the set of probability distributions on S, and \rightsquigarrow denotes a partial function)

Definition

An MDP is a tuple $\mathbb{M} = \langle S, P, V \rangle$, where S is a set of *states*, $P: S \times \mathcal{A} \rightsquigarrow \Delta(S)$ is the *partial probabilistic transition function*, and $V: S \rightarrow 2^{\text{Prop}}$ is the *valuation*.

(here, $\Delta(S)$ is the set of probability distributions on S, and \rightsquigarrow denotes a partial function)

MDPs are required to satisfy some coherence conditions, but these are not important here, except for that they entail P(s, a) is finitely supported

Markov Decision Processes

How do we determine probability of reaching a state or sequence of states?

Policies!

Usually these are functions $S \to A$ or $S \to \Delta(A)$, but in our setting we consider (deterministic) finite policies with (bounded) recall

Policies

Let S_s^n be the set of sequences in S of length n starting from s (similar definition for $S_s^{\leq n}$)

Definition

For $n \ge 0$, an *n*-step policy is a pair $\langle s, \pi \rangle$ of an *initial state* $s \in S$, and a function $\pi : S_s^{\leqslant n} \to \mathcal{A}$ such that always $\operatorname{pre}_{\pi(s_1 \cdots s_k)} \in V(s_k)$.

Note that we allow 0-step policies: here the agent has made no planning

Policies

Let S_s^n be the set of sequences in S of length n starting from s (similar definition for $S_s^{\leq n}$)

Definition

For $n \ge 0$, an *n*-step policy is a pair $\langle s, \pi \rangle$ of an *initial state* $s \in S$, and a function $\pi : S_s^{\leqslant n} \to \mathcal{A}$ such that always $\operatorname{pre}_{\pi(s_1 \cdots s_k)} \in V(s_k)$.

Note that we allow 0-step policies: here the agent has made no planning

Given an *n*-step policy $\langle \pi, s \rangle$, we get a probability distribution $\mu_s^{\pi} \in \Delta(S_s^{n+1})$ defined as

$$\mu_{s}^{\pi}(s_{1}\cdots s_{n+1}) = \prod_{i=1}^{n} P(s_{i}, \pi(s_{1}\cdots s_{i}))(s_{i+1})$$

State formulas

$$arphi ::= ot \mid x \mid \mathsf{do}_{\mathsf{a}} \mid arphi \wedge arphi \mid \neg arphi \mid \Diamond_{\Join r}^n \Phi^{n+1}$$

n-step history formulas

$$\Phi^1 ::= \varphi \quad \Phi^{n+1} ::= \varphi \mid \Phi^{n+1} \land \Phi^{n+1} \mid \neg \Phi^{n+1} \mid \mathsf{X} \Phi^n$$

 $x \in \mathsf{Prop}, \ a \in \mathcal{A}, \ n \geqslant 1, \ \bowtie \in \{<, \leqslant, =, \neq, \geqslant, >\}, \ r \in [0,1] \cap \mathbb{Q}$

Semantics

For finite policies $\langle s,\pi\rangle$

 $\pi, s \models x \text{ iff } x \in V(s)$ $\pi, s \models \text{do}_a \text{ iff } \pi \text{ is} \ge 1 \text{-step, and } \pi(s) = a$ $\pi, s \models \Diamond_{\bowtie r}^n \Phi \text{ iff there exists an } n \text{-step policy } \rho$ with initial state s such that $\mu_s^\rho(\{\mathbf{s} \in S_s^{n+1} \mid \rho, \mathbf{s} \models \Phi\}) \bowtie r$

For *n*-step s, π and $\mathbf{s} \in S_s^{n+1}$

$$\pi, \mathbf{s} \models \varphi \text{ iff } \pi, s \models \varphi$$
$$\pi, \mathbf{s} \models \mathsf{X} \Phi \text{ iff } \pi^{s_2}, s_2 \cdots s_{n+1} \models \Phi$$

where π^{s_2} is " π shifted forward to start from s_2 "

$$\mathsf{pre}_{\mathsf{a}} \land \square^1_{\geqq 0.8} (\mathsf{do}_{\mathsf{a}} \to \mathsf{X} \varphi)$$

"The agent can execute a, and doing so will cause φ to hold afterwards with probability at least 80%"

$$\mathsf{pre}_{\mathsf{a}} \land \square^1_{\geqslant 0.8} (\mathsf{do}_{\mathsf{a}} \to \mathsf{X} \varphi)$$

"The agent can execute a, and doing so will cause φ to hold afterwards with probability at least 80%"

$$\Box_{=1}^{n} \mathsf{X}^{n} \Diamond_{\geq 0.5}^{m} \mathsf{X}^{m} \varphi$$

"No matter how the agent acts in the next *n* steps, it is certain that he can afterwards make it at least 50% likely that φ holds in the next *m* steps"

Of interest to intention revision:

Consider intentions as commitments to perform an action at a certain time, i.e. intentions are pairs $\langle a, n \rangle$ with $a \in \mathcal{A}$ and $n \ge 1$. Given a set I of intentions and some $\theta \in [0, 1]$, the formula

$$\operatorname{exec}(I, \theta) = \bigotimes_{\geq \theta}^{n_{\max}} \bigwedge_{\langle a, n \rangle \in I} \mathsf{X}^n \operatorname{do}_a$$

where $n_{\max} = \max_{(a,n) \in I} n$ denotes that the agent can execute all his intentions with certainty $\ge \theta$

So coherence of intentions w.r.t. the agent's beliefs can be defined through satisfiability of the beliefs and exec

Model checking is (obviously?) decidable - satisfiability is also decidable!

To see this, we observe that we can bound model size by the policy depth $pd(\varphi)$ of a formula φ , denoting the deepest amount of steps the policies being quantified over in φ reach.

Theorem (Small model property)

If a formula φ is satisfiable, then it is satisfiable in an MDP with at most as many states as a tree with depth $pd(\varphi)$ and branching factor $\sum_{a \in \mathcal{A}} |Post_a|$, at a policy of at most $pd(\varphi)$ steps.

(verified using standard unraveling techniques)

Theorem (Satisfiability)

The problem of determining for a formula φ whether there exists an MDP and finite policy $\langle s, \pi \rangle$ such that $\pi, s \models \varphi$, is decidable.

Proof sketch. Using the bound *z* given by the small model property, iterate over sets $S = \{s_1, \ldots, s_y\}$ with $y \leq z$ and valuations *V* (need only consider those propositional variables appearing in φ plus pre- and postconditions)

Theorem (Satisfiability)

The problem of determining for a formula φ whether there exists an MDP and finite policy $\langle s, \pi \rangle$ such that $\pi, s \models \varphi$, is decidable.

Proof sketch. Using the bound *z* given by the small model property, iterate over sets $S = \{s_1, \ldots, s_y\}$ with $y \leq z$ and valuations *V* (need only consider those propositional variables appearing in φ plus pre- and postconditions)

We construct a FOL sentence α in the language of real closed fields (RCF) such that

 α is true in the theory of RCF

 \iff there exists *P* and $\langle s, \pi \rangle$ such that $\pi, s \models \varphi$ in $\langle S, P, V \rangle$

Note that we can encode P through variables $p_{i,j,a}$ denoting $P(s_i, a)(s_j)$ (taking care to allow $P(s_i, a)$ to be undefined), and that we can define an RCF formula $\beta(\mathbf{p})$ that is true in RCF iff the variables encode a well-defined P.

Note that we can encode P through variables $p_{i,j,a}$ denoting $P(s_i, a)(s_j)$ (taking care to allow $P(s_i, a)$ to be undefined), and that we can define an RCF formula $\beta(\mathbf{p})$ that is true in RCF iff the variables encode a well-defined P.

If we can define an RCF formula $\gamma_{\varphi,i,\pi}(\mathbf{p})$ that is true in RCF together with $\beta(\mathbf{p})$ iff $\pi, s_i \models \varphi$, we could put

$$\alpha = \exists \mathbf{p}(\beta(\mathbf{p}) \land \bigvee_{\substack{n \leq \mathrm{pd}(\varphi) \\ n - \mathrm{step} \ s_i, \ \pi}} \gamma_{\varphi, i, \pi}(\mathbf{p})),$$

and the well-known decidability of RCF would then give us our decision procedure.

Get ready for a lot of subscripts. Leave now while you can! We (simultaneously) define the following RCF formulas:

• $\delta_{n,i,X,\pi,\bowtie,r}$ (where $X \subseteq S_{s_i}^{n+1}$ and π is *n*-step), meaning " $\mu_{s_i}^{\pi}(X) \bowtie r$ "

Get ready for a lot of subscripts. Leave now while you can! We (simultaneously) define the following RCF formulas:

- $\delta_{n,i,X,\pi,\bowtie,r}$ (where $X \subseteq S_{s_i}^{n+1}$ and π is *n*-step), meaning " $\mu_{s_i}^{\pi}(X) \bowtie r$ "
- $\kappa_{n,\Phi,\mathbf{w},\pi}$ (where $\mathbf{w} \in S^{n+1}$ and π is *n*-step from w_1), meaning " $\pi, \mathbf{w} \models \Phi$ "
 - E.g. $\kappa_{n,X\Phi,\mathbf{w},\pi} = \kappa_{n-1,\Phi,w_2\cdots w_{n+1},\pi^{w_2}}$

Get ready for a lot of subscripts. Leave now while you can! We (simultaneously) define the following RCF formulas:

- $\delta_{n,i,X,\pi,\bowtie,r}$ (where $X \subseteq S_{s_i}^{n+1}$ and π is *n*-step), meaning " $\mu_{s_i}^{\pi}(X) \bowtie r$ "
- $\kappa_{n,\Phi,\mathbf{w},\pi}$ (where $\mathbf{w} \in S^{n+1}$ and π is *n*-step from w_1), meaning " $\pi, \mathbf{w} \models \Phi$ "

E.g.
$$\kappa_{n,\mathsf{X}\Phi,\mathsf{w},\pi} = \kappa_{n-1,\Phi,w_2\cdots w_{n+1},\pi^{w_2}}$$

• $\lambda_{\Phi,i,n,\pi,X}$ meaning "X is the set of all $\mathbf{w} \in S_{s_i}^{n+1}$ such that $\pi, s_i \models \Phi$ "

Defined as $\lambda_{\Phi,i,n,\pi,X} = \bigwedge_{\mathbf{w}\in X} \kappa_{n,\Phi,\mathbf{w},\pi} \wedge \bigwedge_{\mathbf{w}\in S_{s_i}^{n+1}\setminus X} \neg \kappa_{n,\Phi,\mathbf{w},\pi}$

Get ready for a lot of subscripts. Leave now while you can! We (simultaneously) define the following RCF formulas:

- $\delta_{n,i,X,\pi,\bowtie,r}$ (where $X \subseteq S_{s_i}^{n+1}$ and π is *n*-step), meaning " $\mu_{s_i}^{\pi}(X) \bowtie r$ "
- $\kappa_{n,\Phi,\mathbf{w},\pi}$ (where $\mathbf{w} \in S^{n+1}$ and π is *n*-step from w_1), meaning " $\pi, \mathbf{w} \models \Phi$ "

E.g.
$$\kappa_{n,\mathsf{X}\Phi,\mathsf{w},\pi} = \kappa_{n-1,\Phi,w_2\cdots w_{n+1},\pi^{w_2}}$$

• $\lambda_{\Phi,i,n,\pi,X}$ meaning "X is the set of all $\mathbf{w} \in S_{s_i}^{n+1}$ such that $\pi, s_i \models \Phi$ "

Defined as $\lambda_{\Phi,i,n,\pi,X} = \bigwedge_{\mathbf{w}\in X} \kappa_{n,\Phi,\mathbf{w},\pi} \wedge \bigwedge_{\mathbf{w}\in S_{s_i}^{n+1}\setminus X} \neg \kappa_{n,\Phi,\mathbf{w},\pi}$

• And the $\gamma_{\psi,i,\pi}$ mentioned before E.g. $\gamma_{\Diamond_{\bowtie r}^n \Phi,i,\pi} = \bigvee_{n\text{-step } s_i, \rho} \bigvee_{X \subseteq S_{s_i}^{n+1}} \lambda_{\Phi,i,n,\rho,X} \to \delta_{n,i,X,\pi,\bowtie,r}$ Take a breath now. We're having drinks in a bit.

- We have a logic allowing us to reason about finite histories, MDPs, and policies
- The logic has decidability of both model checking & satisfiability

- We have a logic allowing us to reason about finite histories, MDPs, and policies
- The logic has decidability of both model checking & satisfiability

Future work:

- Intention revision!
- Quantitative extensions, closer to AI/RL practice

- We have a logic allowing us to reason about finite histories, MDPs, and policies
- The logic has decidability of both model checking & satisfiability

Future work:

- Intention revision!
- Quantitative extensions, closer to AI/RL practice
- And if the heavens allow it, a better name for the logic

nima@motamed.nl — n.motamed@uu.nl — https://motamed.nl

- We have a logic allowing us to reason about finite histories, MDPs, and policies
- The logic has decidability of both model checking & satisfiability

Future work:

- Intention revision!
- Quantitative extensions, closer to AI/RL practice
- And if the heavens allow it, a better name for the logic

Thank you!

nima@motamed.nl — n.motamed@uu.nl — https://motamed.nl