
A Probabilistic Finite Temporal Logic for

Policies and Intentions

Nima Motamed, Natasha Alechina, Mehdi Dastani, Dragan Doder

August 26, 2022 — LAMAS&SR 2022 — Rennes, France

Utrecht University



A Probabilistic Finite Temporal Logic for

Policies and Intentions

Nima Motamed, Natasha Alechina, Mehdi Dastani, Dragan Doder

August 26, 2022 — LAMAS&SR 2022 — Rennes, France

Utrecht University



A Probabilistic Finite Temporal Logic for

Policies and Intentions ???

Nima Motamed, Natasha Alechina, Mehdi Dastani, Dragan Doder

August 26, 2022 — LAMAS&SR 2022 — Rennes, France

Utrecht University



Motivation: intentions

Developing intention revision

with uncertainty

Following common BDI

approach by working within a

temporal logic

Could use probabilistic strategy

logic, probabilistic CTL

But no (known) decidable

satisfiability + model checking

(in some cases)...

So here comes our logic: Finite MDP-PCTL*
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Actions and propositions

Finite set A of actions, countable set Prop of propositional

variables

For each action a ∈ A, a precondition prea ∈ Prop, and finite set

of postconditions Posta ⊆ Prop

Actions have uncertain outcomes, i.e. multiple possible

postconditions
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Markov Decision Processes

Definition

An MDP is a tuple M = 〈S ,P,V 〉, where S is a set of states,

P : S ×A ∆(S) is the partial probabilistic transition function,

and V : S → 2Prop is the valuation.

(here, ∆(S) is the set of probability distributions on S , and  

denotes a partial function)

MDPs are required to satisfy some coherence conditions, but these

are not important here, except for that they entail P(s, a) is

finitely supported
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Markov Decision Processes
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Policies

How do we determine probability of reaching a state or sequence of

states?

Policies!

Usually these are functions S → A or S → ∆(A), but in our

setting we consider (deterministic) finite policies with (bounded)

recall
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Policies

Let Sn
s be the set of sequences in S of length n starting from s

(similar definition for S6ns )

Definition

For n > 0, an n-step policy is a pair 〈s, π〉 of an initial state

s ∈ S , and a function π : S6ns → A such that always

preπ(s1···sk ) ∈ V (sk).

Note that we allow 0-step policies: here the agent has made no

planning

Given an n-step policy 〈π, s〉, we get a probability distribution

µπs ∈ ∆(Sn+1
s ) defined as

µπs (s1 · · · sn+1) =
n∏

i=1

P(si , π(s1 · · · si ))(si+1)
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Syntax

State formulas

ϕ ::= ⊥ | x | doa | ϕ ∧ ϕ | ¬ϕ | ♦n./rΦn+1

n-step history formulas

Φ1 ::= ϕ Φn+1 ::= ϕ | Φn+1 ∧ Φn+1 | ¬Φn+1 | XΦn

x ∈ Prop, a ∈ A, n > 1, ./ ∈ {<,6,=, 6=,>, >}, r ∈ [0, 1] ∩Q
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Semantics

For finite policies 〈s, π〉

π, s |= x iff x ∈ V (s)

π, s |= doa iff π is > 1-step, and π(s) = a

π, s |= ♦n./rΦ iff there exists an n-step policy ρ

with initial state s such that

µρs ({s ∈ Sn+1
s | ρ, s |= Φ}) ./ r

For n-step s, π and s ∈ Sn+1
s

π, s |= ϕ iff π, s |= ϕ

π, s |= XΦ iff πs2 , s2 · · · sn+1 |= Φ

where πs2 is “π shifted forward to start from s2”
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Example formulas

prea ∧�1
>0.8(doa → Xϕ)

“The agent can execute a, and doing so will cause ϕ to hold

afterwards with probability at least 80%”

�n
=1Xn♦m>0.5Xmϕ

“No matter how the agent acts in the next n steps, it is certain

that he can afterwards make it at least 50% likely that ϕ holds in

the next m steps”
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Example formulas

Of interest to intention revision:

Consider intentions as commitments to perform an action at a

certain time, i.e. intentions are pairs 〈a, n〉 with a ∈ A and n > 1.

Given a set I of intentions and some θ ∈ [0, 1], the formula

exec(I , θ) = ♦nmax
>θ

∧
〈a,n〉∈I

Xndoa

where nmax = max〈a,n〉∈I n denotes that the agent can execute all

his intentions with certainty > θ

So coherence of intentions w.r.t. the agent’s beliefs can be defined

through satisfiability of the beliefs and exec
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Decidability

Model checking is (obviously?) decidable - satisfiability is also

decidable!

To see this, we observe that we can bound model size by the policy

depth pd(ϕ) of a formula ϕ, denoting the deepest amount of steps

the policies being quantified over in ϕ reach.

Theorem (Small model property)

If a formula ϕ is satisfiable, then it is satisfiable in an MDP with

at most as many states as a tree with depth pd(ϕ) and branching

factor
∑

a∈A |Posta|, at a policy of at most pd(ϕ) steps.

(verified using standard unraveling techniques)
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Decidability

Theorem (Satisfiability)

The problem of determining for a formula ϕ whether there exists

an MDP and finite policy 〈s, π〉 such that π, s |= ϕ, is decidable.

Proof sketch. Using the bound z given by the small model

property, iterate over sets S = {s1, . . . , sy} with y 6 z and

valuations V (need only consider those propositional variables

appearing in ϕ plus pre- and postconditions)

We construct a FOL sentence α in the language of real closed

fields (RCF) such that

α is true in the theory of RCF

⇐⇒ there exists P and 〈s, π〉 such that π, s |= ϕ in 〈S ,P,V 〉
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Decidability

Note that we can encode P through variables pi ,j ,a denoting

P(si , a)(sj) (taking care to allow P(si , a) to be undefined), and

that we can define an RCF formula β(p) that is true in RCF iff the

variables encode a well-defined P.

If we can define an RCF formula γϕ,i ,π(p) that is true in RCF

together with β(p) iff π, si |= ϕ, we could put

α = ∃p(β(p) ∧
∨

n6pd(ϕ)
n-step si , π

γϕ,i ,π(p)),

and the well-known decidability of RCF would then give us our

decision procedure.
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Decidability

Get ready for a lot of subscripts. Leave now while you can!

We (simultaneously) define the following RCF formulas:

• δn,i ,X ,π,./,r (where X ⊆ Sn+1
si

and π is n-step), meaning

“µπsi (X ) ./ r”

• κn,Φ,w,π (where w ∈ Sn+1 and π is n-step from w1), meaning

“π,w |= Φ”

E.g. κn,XΦ,w,π = κn−1,Φ,w2···wn+1,πw2

• λΦ,i ,n,π,X meaning “X is the set of all w ∈ Sn+1
si

such that

π, si |= Φ”

Defined as λΦ,i ,n,π,X =
∧

w∈X κn,Φ,w,π ∧
∧

w∈Sn+1
si
\X ¬κn,Φ,w,π

• And the γψ,i ,π mentioned before

E.g. γ♦n./rΦ,i ,π =
∨

n-step si , ρ

∨
X⊆Sn+1

si
λΦ,i ,n,ρ,X → δn,i ,X ,π,./,r
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Take a breath now. We’re having drinks in a bit.
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Wrapping up

Summing up:

• We have a logic allowing us to

reason about finite histories,

MDPs, and policies

• The logic has decidability of both

model checking & satisfiability

Future work:

• Intention revision!

• Quantitative extensions,

closer to AI/RL practice

• And if the heavens allow it,

a better name for the logic

Thank you!
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