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Our intention is to study intentions: to build a theory of intention revision under
uncertainty

Reasoning about such intentions requires an appropriate probabilistic temporal logic,
allowing us to explicitly reason about the execution and executability of the agent's
actions

But well-known (infinite-trace) ones like PCTL, pCTL*, PATL/PATL* or Probabilistic
Strategy Logic do not have this! Plus: they have high complexity (sometimes
undecidable) model checking, and the decidability of satisfiability is still open
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PBLP

We introduce the Probabilistic Logic of Bounded Policies (PBLP)

The logic is interpreted w.r.t. finite traces and bounded policies - a policy/strategy
that holds for a certain number of steps.

PBLP is expressive enough for our needs (and can in fact express properties important
for other Al applications), and it has good computational properties.



Markov Decision Processes and bounded policies

Fix a finite set A of actions, and for every a € A a precondition pre, and finite set of
postconditions Post, - these are conjunctions of literals.

Definition

An MDP is a tuple M = (5, P, V), where S is a set of states, P : S x A v A(S) is
the partial probabilistic transition function, and V : S — 2PP is the valuation.

(+ coherence conditions ensuring that pre- and postconditions are meaningful)
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Definition
An MDP is a tuple M = (5, P, V), where S is a set of states, P : S x A v A(S) is
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Definition
For n > 1, an n-step policy from a state s is a function 7 : S5" — A (where S=" is

the set of all length < n sequences from s) such that sy [= pre;(q,..q,)-



Syntax & semantics

n-step path formulas (defined inductively w.r.t. n):
0= O™l =g |dos(ac A) | D" A O™ - | X"

Interpreted over state-action paths w = sja; - - - spansp+1, with w |= do, iff a1 = a,
and w = X iff spap -+ spp1 =@

State formulas:
@ = x(€ Prop) [ o A o | =p | O "
here, n>1, re[0,1] and x € {<,=,>}

For states: s = Q[L,® iff there is an n-step policy 7 from s such that under the policy,
the probability that the next n steps of states and actions satisfies ® is > r
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* pre, A[JLyg(dos — X¢) “The agent can execute a, and doing so will cause ¢ to
hold afterwards with probability at least 80%"
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formula 0% ¢(do, A /\i=12 X(post, ; — dop,) A XXi) states that under this
policy, ¢ holds with probability 60% in two steps.



What can we express?

* pre, A[JLyg(dos — X¢) “The agent can execute a, and doing so will cause ¢ to
hold afterwards with probability at least 80%"

® We can reason about specific policies: consider a 2-step policy saying to do a
now, and afterwards b; if we got the first postcondition of a, otherwise by. The
formula 0% ¢(do, A /\i=12 X(post, ; — dop,) A XXi) states that under this
policy, ¢ holds with probability 60% in two steps.

* Following Shoham (2009) in considering basic intentions to be pairs (a, t)
denoting ‘the agent intends to do a at time t', coherence of a set / of such
intentions with respect to a set I of formulas representing the agent's beliefs is
stating that

MU {Qma /\ Xfdo,} (where tyax = max t)

>0 Y (a,t)el

is satisfiable - the agent does not believe that their intentions are not realizable



Computational properties

Model checking is PSPACE-complete: membership is shown using an
NPSPACE-algorithm that traverses the MDP by guessing actions to take; hardness is
shown by a reduction from QSAT inspired by Bulling & Jamroga (2010)
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Model checking is PSPACE-complete: membership is shown using an
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More excitingly: satisfiability is decidable in 2-EXPSPACE: PBLP has the bounded
model property, so the algorithm iterates over S and V up to the bound, and for each
determines whether there is P and s satisfying the formula by checking whether a
certain existential first-order logic sentence is valid in the theory of real closed fields
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Wrapping up

Summing up:
® We have a logic allowing us to reason
about finite traces and bounded policies

® The logic can express important properties
for Al, while still having strong
computational properties

Thank you!

Future work:
* Defining and/or axiomatizing
belief and intention revision
operators using PBLP

® Develop a quantitative
extension incorporating reward
signals, for applications in
Reinforcement Learning



