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Yet another temporal logic. . .

Our intention is to study intentions: to build a theory of intention revision under
uncertainty

Reasoning about such intentions requires an appropriate probabilistic temporal logic,
allowing us to explicitly reason about the execution and executability of the agent’s
actions

But well-known (infinite-trace) ones like PCTL, pCTL˚, PATL/PATL˚ or Probabilistic
Strategy Logic do not have this! Plus: they have high complexity (sometimes
undecidable) model checking, and the decidability of satisfiability is still open
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The idea

Consider finite traces and bounded policies - a policy/strategy that holds for a
certain number of steps.

We introduce the Probabilistic Logic of Bounded Policies (PLBP)

PLBP is expressive enough for our needs (and can in fact express properties important
for other AI applications), and it has good computational properties.
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Markov Decision Processes and bounded policies

Fix a finite set A of actions, and for every a P A a precondition prea and finite set of
postconditions Posta - these are conjunctions of literals.

Definition
An MDP is a tuple M “ xS ,P,V y, where S is a set of states, P : S ˆA ù ∆pSq is
the partial probabilistic transition function, and V : S Ñ 2Prop is the valuation.

(+ coherence conditions ensuring that pre- and postconditions are meaningful: prea
holds iff a is executable, Posta corresponds precisely to outcomes of a at each state)

Definition
For n ě 1, an n-step policy from a state s is a function π : Sďn

s Ñ A (where Sďn
s is

the set of all length ď n sequences from s) such that sk |ù preπps1¨¨¨sk q.
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Syntax & semantics

State formulas:
φ ::“ xpP Propq | φ^ φ | ␣φ | ♢n

’rΦ
n

here, n ě 1, r P r0, 1s and ’ P tă,“,ąu

For states: s |ù ♢n
’rΦ iff there is an n-step policy π from s such that under the policy,

the probability that the next n steps of states and actions satisfies Φ is ’ r

n-step path formulas (defined inductively w.r.t. n):

Φ0 ::“ φ Φn`1 ::“ φ | doapa P Aq | Φ
n`1 ^ Φn`1 | ␣Φn`1 | XΦn

Interpreted over state-action paths w “ s1a1 ¨ ¨ ¨ snansn`1, with w |ù doa iff a1 “ a,
and w |ù XΦ iff s2a2 ¨ ¨ ¨ sn`1 |ù Φ
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What can we express
‚

ln
“1X

n♢m
ą0.5

ł

0ďiďm

Xi␣safe

“No matter what the agent does in the next n steps, it is certain that they can
afterwards act in such a way that they will most likely be in danger”

‚ We can reason about (abstractions of) specific policies / conditional plans:
e.g. consider a 2-step policy saying to do a now, and afterwards b1 if we got the
first postcondition of a, otherwise b2. The formula

exec “ ♢2
“1pdoa ^

ľ

i“1,2

Xpposta,i Ñ dobi qq

states that this policy is executable. The formula

exec^ ♢2
ą0.5pdoa ^

`

ľ

i“1,2

Xpposta,i Ñ dobi q
˘

^ psafe^ Xsafeqq

states the policy is executable, and most likely leads to a safe state
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What can we express

‚ Following Shoham1 in considering basic intentions to be pairs pa, tq denoting ‘the
agent intends to do a at time t’, coherence of a set I of such intentions with
respect to a set Γ of formulas representing the agent’s beliefs is stating that

ΓY t♢tmax
ą0

ľ

pa,tqPI

Xtdoau (where tmax “ max
pa,tqPI

t)

is satisfiable - the agent does not believe that their intentions are not realizable

1Shoham, Yoav (2009), “Logical Theories of Intention and the Database Perspective”



Model checking

Model checking asks given MDP M, state s and φ, if M, s |ù φ

Membership in PSPACE is shown using an nondeterministic polyspace algorithm that
labels states by the subformulas they satisfy: for ♢n

’rΦ, traverse the MDP by guessing
actions to take. PSPACE follows from PSPACE = NPSPACE by Savitch’s theorem2

It is also PSPACE-hard by a reduction from QSAT inspired by Bulling & Jamroga
(2010)3

2Savitch, Walter J. (1970), ”Relationships between nondeterministic and deterministic tape
complexities”

3Bulling, Nils and Jamroga, Wojciech (2010), “Verifying Agents with Memory is Harder Than It
Seemed”



Model checking

Model checking asks given MDP M, state s and φ, if M, s |ù φ

Membership in PSPACE is shown using an nondeterministic polyspace algorithm that
labels states by the subformulas they satisfy: for ♢n

’rΦ, traverse the MDP by guessing
actions to take. PSPACE follows from PSPACE = NPSPACE by Savitch’s theorem2

It is also PSPACE-hard by a reduction from QSAT inspired by Bulling & Jamroga
(2010)3

2Savitch, Walter J. (1970), ”Relationships between nondeterministic and deterministic tape
complexities”

3Bulling, Nils and Jamroga, Wojciech (2010), “Verifying Agents with Memory is Harder Than It
Seemed”



Model checking

Model checking asks given MDP M, state s and φ, if M, s |ù φ

Membership in PSPACE is shown using an nondeterministic polyspace algorithm that
labels states by the subformulas they satisfy: for ♢n

’rΦ, traverse the MDP by guessing
actions to take. PSPACE follows from PSPACE = NPSPACE by Savitch’s theorem2

It is also PSPACE-hard by a reduction from QSAT inspired by Bulling & Jamroga
(2010)3

2Savitch, Walter J. (1970), ”Relationships between nondeterministic and deterministic tape
complexities”

3Bulling, Nils and Jamroga, Wojciech (2010), “Verifying Agents with Memory is Harder Than It
Seemed”



Satisfiability

Satisfiability asks given φ, whether there exist M and s with M, s |ù φ

Can be used to check coherence of intentions, compute logical consequences, or
model check partially specified MDPs

Satisfiability is decidable in 2-EXPSPACE:

‚ PLBP has the finite model property: satisfiable φ is satisfied in MDP of size
ď bφ

‚ Algorithm iterates over S of size ď bφ and V

‚ Determines whether there is P and s with pS ,P,V q, s |ù φ by checking whether a
certain existential first-order logic sentence is valid in the theory of real closed
fields4

4Decidable in PSPACE by Canny, John (1988), “Some algebraic and geometric computations in
PSPACE.”
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Wrapping up

Summing up:

‚ We have a logic allowing us to reason about
finite traces and bounded policies

‚ The logic can express important properties for
AI, while still having strong computational
properties

Work being done:

‚ We have a definition of bisimilarity
with soundness & completeness:
what are applications in e.g. MDP
minimization

‚ Defining and axiomatizing belief and
intention revision operators using
PLBP

‚ Developing a quantitative
extension incorporating reward
signals, for applications in
Reinforcement Learning

Thank you!
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